SCHEMBL105486

Kakonein is a lipid of Polyketides (PK) class. Kakonein is associated with abnormalities such as Fatty Liver, Chronic liver disease, Morphologically altered structure, Hypertensive disease and Cardiovascular Diseases. The involved functions are known as protein expression, Extravasation, Liver damage, mRNA Expression and cell activation. Kakonein often locates in Body tissue, Hepatic, Microvilli, Cytoplasm and Membrane. The associated genes with Kakonein are TJP1 gene, CD14 gene, iberiotoxin, AT-Rich Interactive Domain-Containing Protein 1A and NKS1 gene. The related lipids are dehydrosoyasaponin I and Steroids. The related experimental models are Knock-out.

Cross Reference

Introduction

To understand associated biological information of SCHEMBL105486, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with SCHEMBL105486?

SCHEMBL105486 is suspected in Chronic liver disease, Hypertensive disease, Cardiovascular Diseases, Myocardial Infarction, Cerebrovascular accident, Fatty Liver and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with SCHEMBL105486

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Lead Poisoning D007855 4 associated lipids
Adenocarcinoma D000230 166 associated lipids
Burns D002056 34 associated lipids
Inflammation D007249 119 associated lipids
Reperfusion Injury D015427 65 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Fatty Liver D005234 48 associated lipids
Per page 10 20 50 | Total 43

PubChem Associated disorders and diseases

What pathways are associated with SCHEMBL105486

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with SCHEMBL105486?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with SCHEMBL105486?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with SCHEMBL105486?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with SCHEMBL105486?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with SCHEMBL105486?

Knock-out

Knock-out are used in the study 'MATE2 mediates vacuolar sequestration of flavonoid glycosides and glycoside malonates in Medicago truncatula.' (Zhao J et al., 2011).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with SCHEMBL105486

Download all related citations
Per page 10 20 50 100 | Total 919
Authors Title Published Journal PubMed Link
Mercer LD et al. Dietary polyphenols protect dopamine neurons from oxidative insults and apoptosis: investigations in primary rat mesencephalic cultures. 2005 Biochem. Pharmacol. pmid:15627486
Vera JC et al. Direct inhibition of the hexose transporter GLUT1 by tyrosine kinase inhibitors. 2001 Biochemistry pmid:11170395
Deng Y et al. ERK5/KLF2 activation is involved in the reducing effects of puerarin on monocyte adhesion to endothelial cells and atherosclerotic lesion in apolipoprotein E-deficient mice. 2018 Biochim. Biophys. Acta pmid:29723698
Huang F et al. Puerarin attenuates endothelial insulin resistance through inhibition of inflammatory response in an IKKβ/IRS-1-dependent manner. 2012 Biochimie pmid:22314193
Lee OH et al. Puerarin enhances adipocyte differentiation, adiponectin expression, and antioxidant response in 3T3-L1 cells. 2010 Nov-Dec Biofactors pmid:20806284
Wang ZK et al. Alleviation of Lead-Induced Apoptosis by Puerarin via Inhibiting Mitochondrial Permeability Transition Pore Opening in Primary Cultures of Rat Proximal Tubular Cells. 2016 Biol Trace Elem Res pmid:27116952
Zhang Y et al. Puerarin Prevents LPS-Induced Osteoclast Formation and Bone Loss via Inhibition of Akt Activation. 2016 Biol. Pharm. Bull. pmid:27904045
Zhao LX et al. The permeability of puerarin loaded poly(butylcyanoacrylate) nanoparticles coated with polysorbate 80 on the blood-brain barrier and its protective effect against cerebral ischemia/reperfusion injury. 2013 Biol. Pharm. Bull. pmid:23902970
Yasuda T et al. Urinary and biliary metabolites of puerarin in rats. 1995 Biol. Pharm. Bull. pmid:7742802
Yue PF et al. The study to reduce the hemolysis side effect of puerarin by a submicron emulsion delivery system. 2008 Biol. Pharm. Bull. pmid:18175940