LTC4

Ltc4 is a lipid of Fatty Acyls (FA) class. Ltc4 is associated with abnormalities such as Asthma, Eosinophilia, Pulmonary Eosinophilia, Pneumonia and Cardiovascular Diseases. The involved functions are known as Signal, Gene Expression, Stimulus, Signal Transduction and Metabolic Inhibition. Ltc4 often locates in Plasma membrane, Cytoplasm, Back, Cytoplasmic and Tissue membrane. The associated genes with LTC4 are STIM1 gene, ABCC2 gene, CD9 gene, Mutant Proteins and Amino Acids, Aromatic. The related lipids are glycolithocholate.

Cross Reference

Introduction

To understand associated biological information of LTC4, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with LTC4?

LTC4 is suspected in Pneumonia, Asthma, Pulmonary Eosinophilia, Eosinophilia, Cardiovascular Diseases, Disintegration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with LTC4

MeSH term MeSH ID Detail
Abnormalities, Multiple D000015 13 associated lipids
Acute-Phase Reaction D000210 12 associated lipids
Airway Obstruction D000402 13 associated lipids
Anaphylaxis D000707 35 associated lipids
Angina Pectoris D000787 27 associated lipids
Arthritis D001168 41 associated lipids
Asbestosis D001195 8 associated lipids
Asthma D001249 52 associated lipids
Asthma, Exercise-Induced D001250 10 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Cholestasis, Extrahepatic D001651 7 associated lipids
Body Weight D001835 333 associated lipids
Burns D002056 34 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Brain Ischemia D002545 89 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Cestode Infections D002590 3 associated lipids
Colitis D003092 69 associated lipids
Common Bile Duct Diseases D003137 3 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Cough D003371 19 associated lipids
Drug Eruptions D003875 30 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Drug Hypersensitivity D004342 20 associated lipids
Ear Diseases D004427 7 associated lipids
Edema D004487 152 associated lipids
Eosinophilia D004802 4 associated lipids
Gastritis D005756 27 associated lipids
Glioma D005910 112 associated lipids
Glomerulonephritis D005921 35 associated lipids
Rhinitis, Allergic, Seasonal D006255 7 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Hyperbilirubinemia, Hereditary D006933 3 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypotension D007022 41 associated lipids
Inflammation D007249 119 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Leukemia D007938 74 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Liver Cirrhosis, Experimental D008106 36 associated lipids
Lung Neoplasms D008175 171 associated lipids
Mesenteric Vascular Occlusion D008641 4 associated lipids
Metabolism, Inborn Errors D008661 46 associated lipids
Nasal Polyps D009298 26 associated lipids
Periapical Periodontitis D010485 6 associated lipids
Peritonitis D010538 38 associated lipids
Phlebitis D010689 1 associated lipids
Picornaviridae Infections D010850 4 associated lipids
Pneumococcal Infections D011008 7 associated lipids
Pseudoxanthoma Elasticum D011561 2 associated lipids
Pulmonary Fibrosis D011658 24 associated lipids
Respiratory Hypersensitivity D012130 18 associated lipids
Rhinitis, Allergic, Perennial D012221 6 associated lipids
Osteosarcoma D012516 50 associated lipids
Spinal Cord Injuries D013119 34 associated lipids
Status Asthmaticus D013224 4 associated lipids
Stomach Ulcer D013276 75 associated lipids
Ulcer D014456 16 associated lipids
Uveitis D014605 14 associated lipids
Wounds, Nonpenetrating D014949 4 associated lipids
Reperfusion Injury D015427 65 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Leukemia, Myelogenous, Chronic, BCR-ABL Positive D015464 17 associated lipids
Bronchial Hyperreactivity D016535 15 associated lipids
Myocardial Ischemia D017202 11 associated lipids
Carcinoma, Small Cell D018288 21 associated lipids
Respiratory Syncytial Virus Infections D018357 10 associated lipids
Carotid Artery Injuries D020212 8 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Brain Diseases, Metabolic, Inborn D020739 10 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Atherosclerosis D050197 85 associated lipids
Eosinophilic Esophagitis D057765 3 associated lipids
Neointima D058426 3 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with LTC4

Lipid pathways are not clear in current pathway databases. We organized associated pathways with LTC4 through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with LTC4?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with LTC4?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with LTC4?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with LTC4?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with LTC4?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with LTC4

Download all related citations
Per page 10 20 50 100 | Total 1173
Authors Title Published Journal PubMed Link
Scoggan KA et al. Production of leukotriene C4 in different human tissues is attributable to distinct membrane bound biosynthetic enzymes. 1997 J. Biol. Chem. pmid:9092565
Carter BZ et al. Metabolism of leukotriene C4 in gamma-glutamyl transpeptidase-deficient mice. 1997 J. Biol. Chem. pmid:9139674
Bandeira-Melo C et al. Extranuclear lipid bodies, elicited by CCR3-mediated signaling pathways, are the sites of chemokine-enhanced leukotriene C4 production in eosinophils and basophils. 2001 J. Biol. Chem. pmid:11274187
Zhang DW et al. Identification of an amino acid residue in multidrug resistance protein 1 critical for conferring resistance to anthracyclines. 2001 J. Biol. Chem. pmid:11278596
Ito K et al. Mutation of a single conserved tryptophan in multidrug resistance protein 1 (MRP1/ABCC1) results in loss of drug resistance and selective loss of organic anion transport. 2001 J. Biol. Chem. pmid:11278867
Situ D et al. Mutational analysis of ionizable residues proximal to the cytoplasmic interface of membrane spanning domain 3 of the multidrug resistance protein, MRP1 (ABCC1): glutamate 1204 is important for both the expression and catalytic activity of the transporter. 2004 J. Biol. Chem. pmid:15208328
Chang WC et al. Local Ca2+ influx through Ca2+ release-activated Ca2+ (CRAC) channels stimulates production of an intracellular messenger and an intercellular pro-inflammatory signal. 2008 J. Biol. Chem. pmid:18156181
Loe DW et al. ATP-dependent 17 beta-estradiol 17-(beta-D-glucuronide) transport by multidrug resistance protein (MRP). Inhibition by cholestatic steroids. 1996 J. Biol. Chem. pmid:8621644
Ahamed J and Ali H Distinct roles of receptor phosphorylation, G protein usage, and mitogen-activated protein kinase activation on platelet activating factor-induced leukotriene C(4) generation and chemokine production. 2002 J. Biol. Chem. pmid:11934880
Gao M et al. Multidrug resistance protein. Identification of regions required for active transport of leukotriene C4. 1998 J. Biol. Chem. pmid:9553138
Mao Q et al. GSH-dependent photolabeling of multidrug resistance protein MRP1 (ABCC1) by [125I]LY475776. Evidence of a major binding site in the COOH-proximal membrane spanning domain. 2002 J. Biol. Chem. pmid:12034727
Fernández SB et al. Role of the N-terminal transmembrane region of the multidrug resistance protein MRP2 in routing to the apical membrane in MDCKII cells. 2002 J. Biol. Chem. pmid:12060660
Iram SH and Cole SP Expression and function of human MRP1 (ABCC1) is dependent on amino acids in cytoplasmic loop 5 and its interface with nucleotide binding domain 2. 2011 J. Biol. Chem. pmid:21177244
Blokzijl H et al. Up-regulation and cytoprotective role of epithelial multidrug resistance-associated protein 1 in inflammatory bowel disease. 2008 J. Biol. Chem. pmid:18838379
Zhang DW et al. Functional importance of polar and charged amino acid residues in transmembrane helix 14 of multidrug resistance protein 1 (MRP1/ABCC1): identification of an aspartate residue critical for conversion from a high to low affinity substrate binding state. 2003 J. Biol. Chem. pmid:12954620
Konno T et al. Identification of domains participating in the substrate specificity and subcellular localization of the multidrug resistance proteins MRP1 and MRP2. 2003 J. Biol. Chem. pmid:12682044
Payen LF et al. Role of carboxylate residues adjacent to the conserved core Walker B motifs in the catalytic cycle of multidrug resistance protein 1 (ABCC1). 2003 J. Biol. Chem. pmid:12882957
Bannenberg G et al. Leukotriene C4 is a tight-binding inhibitor of microsomal glutathione transferase-1. Effects of leukotriene pathway modifiers. 1999 J. Biol. Chem. pmid:9890956
Kanaoka Y et al. Identification of GPR99 protein as a potential third cysteinyl leukotriene receptor with a preference for leukotriene E4 ligand. 2013 J. Biol. Chem. pmid:23504326
Murakami M et al. Interleukin-3 regulates development of the 5-lipoxygenase/leukotriene C4 synthase pathway in mouse mast cells. 1995 J. Biol. Chem. pmid:7559381
Perrotton T et al. (R)- and (S)-verapamil differentially modulate the multidrug-resistant protein MRP1. 2007 J. Biol. Chem. pmid:17646169
Bates ME et al. ERK1 and ERK2 activation by chemotactic factors in human eosinophils is interleukin 5-dependent and contributes to leukotriene C(4) biosynthesis. 2000 J. Biol. Chem. pmid:10753897
Heise CE et al. Characterization of the human cysteinyl leukotriene 2 receptor. 2000 J. Biol. Chem. pmid:10851239
Conseil G et al. Functional importance of three basic residues clustered at the cytosolic interface of transmembrane helix 15 in the multidrug and organic anion transporter MRP1 (ABCC1). 2006 J. Biol. Chem. pmid:16230346
Ito K et al. Functional analysis of a canalicular multispecific organic anion transporter cloned from rat liver. 1998 J. Biol. Chem. pmid:9430713
Westlake CJ et al. Identification and characterization of functionally important elements in the multidrug resistance protein 1 COOH-terminal region. 2004 J. Biol. Chem. pmid:15459206
Christmas P et al. Membrane localization and topology of leukotriene C4 synthase. 2002 J. Biol. Chem. pmid:12023288
Hui Y et al. The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. 2001 J. Biol. Chem. pmid:11591709
Hong JT et al. Effect of phenobarbital and the peroxisome proliferator ciprofibrate on gamma-Glutamyltranspeptidase activity and leukotriene C4 concentration in cultured rat hepatocytes. 1995 J. Biochem. Toxicol. pmid:8847705
Ren XQ et al. A functional role of intracellular loops of human multidrug resistance protein 1. 2006 J. Biochem. pmid:16861249
Falcón-Pérez JM et al. Domain interactions in the yeast ATP binding cassette transporter Ycf1p: intragenic suppressor analysis of mutations in the nucleotide binding domains. 2001 J. Bacteriol. pmid:11466279
De Castro CM et al. Modulation by dexamethasone of phospholipase A2 activities in endotoxemic guinea pigs. 1995 J. Appl. Physiol. pmid:8567572
Hevko JM and Murphy RC Electrospray ionization and tandem mass spectrometry of cysteinyl eicosanoids: leukotriene C4 and FOG7. 2001 J. Am. Soc. Mass Spectrom. pmid:11444597
Devakumar A et al. Structural analysis of leukotriene C4 isomers using collisional activation and 157 nm photodissociation. 2008 J. Am. Soc. Mass Spectrom. pmid:18024058
De Servi S et al. Transcardiac release of leukotriene C4 by neutrophils in patients with coronary artery disease. 1991 J. Am. Coll. Cardiol. pmid:2007712
Nakasato H et al. Prevention of severe premenstrual asthma attacks by leukotriene receptor antagonist. 1999 J. Allergy Clin. Immunol. pmid:10482831
Sachs-Olsen C et al. Eoxins: a new inflammatory pathway in childhood asthma. 2010 J. Allergy Clin. Immunol. pmid:20920774
Akin C et al. Mast cell activation syndrome: Proposed diagnostic criteria. 2010 J. Allergy Clin. Immunol. pmid:21035176
Thivierge M et al. Toll-like receptor agonists differentially regulate cysteinyl-leukotriene receptor 1 expression and function in human dendritic cells. 2006 J. Allergy Clin. Immunol. pmid:16675346
Yoshisue H et al. Cysteinyl leukotrienes synergize with growth factors to induce proliferation of human bronchial fibroblasts. 2007 J. Allergy Clin. Immunol. pmid:17208594
Lee KS et al. Cysteinyl leukotriene upregulates IL-11 expression in allergic airway disease of mice. 2007 J. Allergy Clin. Immunol. pmid:17208595
Zaitsu M et al. A novel pharmacologic action of glucocorticosteroids on leukotriene C4 catabolism. 2001 J. Allergy Clin. Immunol. pmid:11447392
Lee TH et al. Leukotriene E4: perspective on the forgotten mediator. 2009 J. Allergy Clin. Immunol. pmid:19482346
Austen KF et al. The leukotriene E4 puzzle: finding the missing pieces and revealing the pathobiologic implications. 2009 J. Allergy Clin. Immunol. pmid:19647860
Chen YH et al. IFN-alpha inhibits IL-3 priming of human basophil cytokine secretion but not leukotriene C4 and histamine release. 2003 J. Allergy Clin. Immunol. pmid:14610485
Horsmanheimo L et al. Histamine and leukotriene C4 release in cutaneous mosquito-bite reactions. 1996 J. Allergy Clin. Immunol. pmid:8757218
de Paulis A et al. Cyclosporin H is a potent and selective competitive antagonist of human basophil activation by N-formyl-methionyl-leucyl-phenylalanine. 1996 J. Allergy Clin. Immunol. pmid:8765829
Juergens UR et al. Inhibition of monocyte leukotriene B4 production after aspirin desensitization. 1995 J. Allergy Clin. Immunol. pmid:7636051
Zweiman B et al. Nasal airway changes assessed by acoustic rhinometry and mediator release during immediate and late reactions to allergen challenge. 1997 J. Allergy Clin. Immunol. pmid:9389292
Lane SJ and Lee TH Mast cell effector mechanisms. 1996 J. Allergy Clin. Immunol. pmid:8939179