LTC4

Ltc4 is a lipid of Fatty Acyls (FA) class. Ltc4 is associated with abnormalities such as Asthma, Eosinophilia, Pulmonary Eosinophilia, Pneumonia and Cardiovascular Diseases. The involved functions are known as Signal, Gene Expression, Stimulus, Signal Transduction and Metabolic Inhibition. Ltc4 often locates in Plasma membrane, Cytoplasm, Back, Cytoplasmic and Tissue membrane. The associated genes with LTC4 are STIM1 gene, ABCC2 gene, CD9 gene, Mutant Proteins and Amino Acids, Aromatic. The related lipids are glycolithocholate.

Cross Reference

Introduction

To understand associated biological information of LTC4, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with LTC4?

LTC4 is suspected in Pneumonia, Asthma, Pulmonary Eosinophilia, Eosinophilia, Cardiovascular Diseases, Disintegration and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with LTC4

MeSH term MeSH ID Detail
Rhinitis, Allergic, Seasonal D006255 7 associated lipids
Hyperbilirubinemia D006932 11 associated lipids
Hyperbilirubinemia, Hereditary D006933 3 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hypersensitivity, Delayed D006968 43 associated lipids
Hypotension D007022 41 associated lipids
Inflammation D007249 119 associated lipids
Insect Bites and Stings D007299 4 associated lipids
Leukemia D007938 74 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Per page 10 20 50 100 | Total 75

PubChem Associated disorders and diseases

What pathways are associated with LTC4

Lipid pathways are not clear in current pathway databases. We organized associated pathways with LTC4 through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with LTC4?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with LTC4?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with LTC4?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with LTC4?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with LTC4?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with LTC4

Download all related citations
Per page 10 20 50 100 | Total 1173
Authors Title Published Journal PubMed Link
de Paulis A et al. Human synovial mast cells. II. Heterogeneity of the pharmacologic effects of antiinflammatory and immunosuppressive drugs. 1997 Arthritis Rheum. pmid:9082935
de Paulis A et al. Human synovial mast cells. I. Ultrastructural in situ and in vitro immunologic characterization. 1996 Arthritis Rheum. pmid:8670335
Fauler J et al. Enhanced synthesis of cysteinyl leukotrienes in juvenile rheumatoid arthritis. 1994 Arthritis Rheum. pmid:8129769
Amat M et al. Leukotriene A4 hydrolase and leukotriene C4 synthase activities in human chondrocytes: transcellular biosynthesis of Leukotrienes during granulocyte-chondrocyte interaction. 1998 Arthritis Rheum. pmid:9751098
Küsters S et al. Effects of antihistamines on leukotriene and cytokine release from dispersed nasal polyp cells. 2002 Arzneimittelforschung pmid:11878205
Ishizuka Y et al. Effect of 1,6-dihydro-2[2-(2-methylpropoxy)anilino]-6-oxo-5-pyrimidineca rboxyli c acid on ethanol-induced microvascular injury in rats. 1996 Arzneimittelforschung pmid:9125278
Llupià J et al. Comparative antiallergic effects of second-generation H1-antihistamines ebastine, cetirizine and loratadine in preclinical models. 2003 Arzneimittelforschung pmid:12642964
Liu L et al. Impairment of macrophage eicosanoid and nitric oxide production by an alkaloid from Sinomenium acutum. 1994 Arzneimittelforschung pmid:7848335
Mita H and Shida T Comparison of anti-allergic activities of the histamine H1 receptor antagonists epinastine, ketotifen and oxatomide in human leukocytes. 1995 Arzneimittelforschung pmid:7893266
Yamada N et al. Pharmacological profile of the novel, potent and selective peptide leukotriene antagonist (E)-2,2-diethyl-3'-[2-[2-(4-isopropyl)thiazolyl]ethenyl]succinanilic acid. 1994 Arzneimittelforschung pmid:8053974
Bando T et al. Inhibitory effect of aerosol administration of a sulfidopeptide leukotriene antagonist on bronchoconstriction induced by antigen inhalation in guinea pigs. 1994 Arzneimittelforschung pmid:8053975
King BO et al. Tirofiban administration attenuates platelet and platelet-neutrophil conjugation but not neutrophil degranulation during in vitro VAD circulation. 2001 May-Jun ASAIO J. pmid:11374774
Ikeno Y et al. Wasp venom allergy: effect of anti-IgE antibody on wasp venom anaphylaxis in a mouse model. 2013 Asian Pac. J. Allergy Immunol. pmid:23859410
Porreca E et al. Modulation of rat vascular smooth muscle cell (VSMC) proliferation by cysteinyl leukotriene D4: a role for mediation of interleukin 1. 1995 Atherosclerosis pmid:7755646
Kamohara M et al. Functional characterization of cysteinyl leukotriene CysLT(2) receptor on human coronary artery smooth muscle cells. 2001 Biochem. Biophys. Res. Commun. pmid:11587533
Seki K et al. Oxidative stress potentially enhances FcεRI-mediated leukotriene C4 release dependent on the late-phase increase of intracellular glutathione in mast cells. 2013 Biochem. Biophys. Res. Commun. pmid:23998930
Niwa Y et al. Opposite effects of PU.1 on mast cell stimulation. 2008 Biochem. Biophys. Res. Commun. pmid:18680724
Nakano R et al. A leukotriene receptor antagonist, ONO-1078, modulates drug sensitivity and leukotriene C4 efflux in lung cancer cells expressing multidrug resistance protein. 1998 Biochem. Biophys. Res. Commun. pmid:9790952
Malaviya R and Uckun FM Genetic and biochemical evidence for a critical role of Janus kinase (JAK)-3 in mast cell-mediated type I hypersensitivity reactions. 1999 Biochem. Biophys. Res. Commun. pmid:10208864
Loe DW et al. Structure-activity studies of verapamil analogs that modulate transport of leukotriene C(4) and reduced glutathione by multidrug resistance protein MRP1. 2000 Biochem. Biophys. Res. Commun. pmid:10973801