LTD4

Ltd4 is a lipid of Fatty Acyls (FA) class. Ltd4 is associated with abnormalities such as Inflammatory Bowel Diseases, Inflammatory disorder, Asthma, Pneumonia and Allergic asthma. The involved functions are known as inhibitors, Signal Transduction, Cell Survival, antagonists and Phosphorylation. Ltd4 often locates in Membrane, Tissue membrane, Protoplasm, Cytoplasmic matrix and membrane fraction. The associated genes with LTD4 are ALOX5 gene, UMOD gene, P4HTM gene, RAF1 gene and Homologous Gene. The related lipids are Lipopolysaccharides.

Cross Reference

Introduction

To understand associated biological information of LTD4, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with LTD4?

LTD4 is suspected in Asthma, Inflammatory Bowel Diseases, Inflammatory disorder, Pneumonia, Allergic asthma, Virus Diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with LTD4

PubChem Associated disorders and diseases

What pathways are associated with LTD4

Lipid pathways are not clear in current pathway databases. We organized associated pathways with LTD4 through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with LTD4?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with LTD4?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with LTD4?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with LTD4?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with LTD4?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with LTD4

Download all related citations
Per page 10 20 50 100 | Total 640
Authors Title Published Journal PubMed Link
Weiss SR et al. Quenching: inhibition of development and expression of amygdala kindled seizures with low frequency stimulation. 1995 Neuroreport pmid:8595196
Tang SS et al. Leukotriene D4 induces cognitive impairment through enhancement of CysLT₁ R-mediated amyloid-β generation in mice. 2013 Neuropharmacology pmid:22982445
Kang KH et al. Protection of dopaminergic neurons by 5-lipoxygenase inhibitor. 2013 Neuropharmacology pmid:23800665
Conroy DM et al. Relaxant effects of pituitary adenylate cyclase activating polypeptide (PACAP) on epithelium-intact and -denuded guinea-pig trachea: a comparison with vasoactive intestinal peptide (VIP). 1995 Neuropeptides pmid:8538872
Dudek SM and Friedlander MJ Developmental down-regulation of LTD in cortical layer IV and its independence of modulation by inhibition. 1996 Neuron pmid:8663986
Schuhmann MU et al. Temporal profiles of cerebrospinal fluid leukotrienes, brain edema and inflammatory response following experimental brain injury. 2003 Neurol. Res. pmid:12866196
Wang XY et al. Leukotriene D4 induces amyloid-β generation via CysLT(1)R-mediated NF-κB pathways in primary neurons. 2013 Neurochem. Int. pmid:23318673
Lynch KR et al. Characterization of the human cysteinyl leukotriene CysLT1 receptor. 1999 Nature pmid:10391245
Zhao L et al. The 5-lipoxygenase pathway promotes pathogenesis of hyperlipidemia-dependent aortic aneurysm. 2004 Nat. Med. pmid:15322539
Capra V et al. Identification and characterization of two cysteinyl-leukotriene high affinity binding sites with receptor characteristics in human lung parenchyma. 1998 Mol. Pharmacol. pmid:9547367
Kargman S et al. Protein kinase C-dependent regulation of sulfidopeptide leukotriene biosynthesis and leukotriene C4 synthase in neutrophilic HL-60 cells. 1994 Mol. Pharmacol. pmid:8190095
Sarau HM et al. Identification, molecular cloning, expression, and characterization of a cysteinyl leukotriene receptor. 1999 Mol. Pharmacol. pmid:10462554
Ravasi S et al. A kinetic binding study to evaluate the pharmacological profile of a specific leukotriene C(4) binding site not coupled to contraction in human lung parenchyma. 2000 Mol. Pharmacol. pmid:10825389
Nothacker HP et al. Molecular cloning and characterization of a second human cysteinyl leukotriene receptor: discovery of a subtype selective agonist. 2000 Mol. Pharmacol. pmid:11093801
Campos MR et al. Differential kinase requirement for enhancement of Fc gammaR-mediated phagocytosis in alveolar macrophages by leukotriene B4 vs. D4. 2009 Mol. Immunol. pmid:19223078
Shi ZZ et al. Disruption of gamma-glutamyl leukotrienase results in disruption of leukotriene D(4) synthesis in vivo and attenuation of the acute inflammatory response. 2001 Mol. Cell. Biol. pmid:11463821
Bellamkonda K et al. The impact of inflammatory lipid mediators on colon cancer-initiating cells. 2015 Mol. Carcinog. pmid:25154976
Capra V et al. Cysteinyl-leukotrienes and their receptors in asthma and other inflammatory diseases: critical update and emerging trends. 2007 Med Res Rev pmid:16894531
Kurogi Y Mesangial cell proliferation inhibitors for the treatment of proliferative glomerular disease. 2003 Med Res Rev pmid:12424751
Forsell PK et al. Metabolism of anandamide into eoxamides by 15-lipoxygenase-1 and glutathione transferases. 2012 Lipids pmid:22684912