LTD4

Ltd4 is a lipid of Fatty Acyls (FA) class. Ltd4 is associated with abnormalities such as Inflammatory Bowel Diseases, Inflammatory disorder, Asthma, Pneumonia and Allergic asthma. The involved functions are known as inhibitors, Signal Transduction, Cell Survival, antagonists and Phosphorylation. Ltd4 often locates in Membrane, Tissue membrane, Protoplasm, Cytoplasmic matrix and membrane fraction. The associated genes with LTD4 are ALOX5 gene, UMOD gene, P4HTM gene, RAF1 gene and Homologous Gene. The related lipids are Lipopolysaccharides.

Cross Reference

Introduction

To understand associated biological information of LTD4, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with LTD4?

LTD4 is suspected in Asthma, Inflammatory Bowel Diseases, Inflammatory disorder, Pneumonia, Allergic asthma, Virus Diseases and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with LTD4

MeSH term MeSH ID Detail
Leukemia D007938 74 associated lipids
Neuralgia D009437 28 associated lipids
Otitis Media with Effusion D010034 9 associated lipids
Respirovirus Infections D010253 3 associated lipids
Peptic Ulcer Hemorrhage D010438 4 associated lipids
Respiratory Hypersensitivity D012130 18 associated lipids
Rhinitis D012220 10 associated lipids
Seizures D012640 87 associated lipids
Sneezing D012912 6 associated lipids
Stomach Ulcer D013276 75 associated lipids
Per page 10 20 50 | Total 39

PubChem Associated disorders and diseases

What pathways are associated with LTD4

Lipid pathways are not clear in current pathway databases. We organized associated pathways with LTD4 through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with LTD4?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with LTD4?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with LTD4?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with LTD4?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with LTD4?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with LTD4

Download all related citations
Per page 10 20 50 100 | Total 640
Authors Title Published Journal PubMed Link
Klegeris A and McGeer PL Toxicity of human monocytic THP-1 cells and microglia toward SH-SY5Y neuroblastoma cells is reduced by inhibitors of 5-lipoxygenase and its activating protein FLAP. 2003 J. Leukoc. Biol. pmid:12629151
Spada CS et al. Comparison of leukotriene B4 and D4 effects on human eosinophil and neutrophil motility in vitro. 1994 J. Leukoc. Biol. pmid:8301215
Krauss AH et al. Determination of leukotriene effects on human neutrophil chemotaxis in vitro by differential assessment of cell motility and polarity. 1994 J. Leukoc. Biol. pmid:8301217
Lee KH et al. Increased expression of endothelial cell adhesion molecules due to mediator release from human foreskin mast cells stimulated by autoantibodies in chronic urticaria sera. 2002 J. Invest. Dermatol. pmid:11918713
Mayatepek E et al. Defects in the synthesis of cysteinyl leukotrienes: a new group of inborn errors of metabolism. 2000 J. Inherit. Metab. Dis. pmid:10896305
Davis HM et al. Human granulocyte CD11b expression as a pharmacodynamic biomarker of inflammation. 2000 J. Immunol. Methods pmid:10854607
Woszczek G et al. IL-10 inhibits cysteinyl leukotriene-induced activation of human monocytes and monocyte-derived dendritic cells. 2008 J. Immunol. pmid:18490762
Thivierge M et al. IL-5 up-regulates cysteinyl leukotriene 1 receptor expression in HL-60 cells differentiated into eosinophils. 2000 J. Immunol. pmid:11046055
Lee SP et al. Crosstalk between prostaglandin E2 and leukotriene B4 regulates phagocytosis in alveolar macrophages via combinatorial effects on cyclic AMP. 2009 J. Immunol. pmid:19109185
Baker N et al. Lipoxin A4: anti-inflammatory and anti-angiogenic impact on endothelial cells. 2009 J. Immunol. pmid:19265161
Chibana K et al. Up-regulation of cysteinyl leukotriene 1 receptor by IL-13 enables human lung fibroblasts to respond to leukotriene C4 and produce eotaxin. 2003 J. Immunol. pmid:12682264
Boehmler AM et al. The CysLT1 ligand leukotriene D4 supports alpha4beta1- and alpha5beta1-mediated adhesion and proliferation of CD34+ hematopoietic progenitor cells. 2009 J. Immunol. pmid:19454674
Thivierge M et al. Cysteinyl-leukotriene receptor type 1 expression and function is down-regulated during monocyte-derived dendritic cell maturation with zymosan: involvement of IL-10 and prostaglandins. 2009 J. Immunol. pmid:19846883
Papayianni A et al. Lipoxin A4 and B4 inhibit leukotriene-stimulated interactions of human neutrophils and endothelial cells. 1996 J. Immunol. pmid:8690917
Cummings HE et al. Cutting edge: Leukotriene C4 activates mouse platelets in plasma exclusively through the type 2 cysteinyl leukotriene receptor. 2013 J. Immunol. pmid:24244016
Thivierge M et al. IL-13 and IL-4 up-regulate cysteinyl leukotriene 1 receptor expression in human monocytes and macrophages. 2001 J. Immunol. pmid:11509632
Peres CM et al. Specific leukotriene receptors couple to distinct G proteins to effect stimulation of alveolar macrophage host defense functions. 2007 J. Immunol. pmid:17911632
Prinz I et al. The type 1 cysteinyl leukotriene receptor triggers calcium influx and chemotaxis in mouse alpha beta- and gamma delta effector T cells. 2005 J. Immunol. pmid:16002666
Woszczek G et al. Concentration-dependent noncysteinyl leukotriene type 1 receptor-mediated inhibitory activity of leukotriene receptor antagonists. 2010 J. Immunol. pmid:20083671
Dartt DA et al. Conjunctival goblet cell secretion stimulated by leukotrienes is reduced by resolvins D1 and E1 to promote resolution of inflammation. 2011 J. Immunol. pmid:21357260
Lefebvre B et al. Effect of 5-lipoxygenase blockade on blood pressure and acetylcholine-evoked endothelium-dependent contraction in aorta from spontaneously hypertensive rats. 2006 J. Hypertens. pmid:16331105
Gyömber E et al. Effect of lipoxygenase inhibitors and leukotriene antagonists on acute and chronic gastric haemorrhagic mucosal lesions in ulcer models in the rat. 1996 J. Gastroenterol. Hepatol. pmid:8912128
Uemura M et al. Cysteinyl leukotrienes in the bile of patients with obstructive jaundice. 2002 J. Gastroenterol. pmid:12424566
Bandeira-Melo C et al. Intracrine cysteinyl leukotriene receptor-mediated signaling of eosinophil vesicular transport-mediated interleukin-4 secretion. 2002 J. Exp. Med. pmid:12235216
Datta HK et al. Parathyroid hormone induces superoxide anion burst in the osteoclast: evidence for the direct instantaneous activation of the osteoclast by the hormone. 1996 J. Endocrinol. pmid:8708538
Meng XJ et al. Leukotriene D4 activates a chloride conductance in hepatocytes from lipopolysaccharide-treated rats. 1997 J. Clin. Invest. pmid:9185515
Soberman RJ and Christmas P The organization and consequences of eicosanoid signaling. 2003 J. Clin. Invest. pmid:12697726
Capra V et al. CysLT1 receptor is a target for extracellular nucleotide-induced heterologous desensitization: a possible feedback mechanism in inflammation. 2005 J. Cell. Sci. pmid:16306225
Massoumi R and Sjölander A Leukotriene D(4) affects localisation of vinculin in intestinal epithelial cells via distinct tyrosine kinase and protein kinase C controlled events. 2001 J. Cell. Sci. pmid:11329379
Massoumi R et al. Leukotriene D(4) induces stress-fibre formation in intestinal epithelial cells via activation of RhoA and PKCdelta. 2002 J. Cell. Sci. pmid:12154081
Paruchuri S et al. Leukotriene D(4) activates MAPK through a Ras-independent but PKCepsilon-dependent pathway in intestinal epithelial cells. 2002 J. Cell. Sci. pmid:11956320
Geirsson A et al. Potentiating effects of pertussis toxin on leukotriene C4 induced formation of inositol phosphate and prostacyclin in human umbilical vein endothelial cells. 1998 J. Cell. Physiol. pmid:9731750
Al-Azzam N et al. Modulation of mast cell proliferative and inflammatory responses by leukotriene d4 and stem cell factor signaling interactions. 2015 J. Cell. Physiol. pmid:25161061
Li PC et al. Enhanced activity of Ca2+-activated K+ channels by 1-[2-hydroxy-3-propyl-4-[(1H-tetrazol-5-yl)butoxyl]phenyl] ethanone (LY-171883) in neuroendocrine and neuroblastoma cell lines. 2002 J. Cell. Physiol. pmid:12115725
Cosentino S et al. Expression of dual nucleotides/cysteinyl-leukotrienes receptor GPR17 in early trafficking of cardiac stromal cells after myocardial infarction. 2014 J. Cell. Mol. Med. pmid:24909956
Kim MH et al. Effect of leukotriene D4 on mouse embryonic stem cell migration and proliferation: involvement of PI3K/Akt as well as GSK-3β/β-catenin signaling pathways. 2010 J. Cell. Biochem. pmid:20589831
Fang SH et al. Pranlukast attenuates ischemia-like injury in endothelial cells via inhibiting reactive oxygen species production and nuclear factor-kappaB activation. 2009 J. Cardiovasc. Pharmacol. pmid:19129732
Garcia C et al. Effects of synthetic peptido-leukotrienes on bone resorption in vitro. 1996 J. Bone Miner. Res. pmid:8992883
Paruchuri S and Sjölander A Leukotriene D4 mediates survival and proliferation via separate but parallel pathways in the human intestinal epithelial cell line Int 407. 2003 J. Biol. Chem. pmid:12912998
McMahon B et al. Lipoxin A4 antagonizes the mitogenic effects of leukotriene D4 in human renal mesangial cells. Differential activation of MAP kinases through distinct receptors. 2000 J. Biol. Chem. pmid:10869343
Maekawa A et al. Targeted gene disruption reveals the role of cysteinyl leukotriene 1 receptor in the enhanced vascular permeability of mice undergoing acute inflammatory responses. 2002 J. Biol. Chem. pmid:11932261
Leier I et al. The MRP gene encodes an ATP-dependent export pump for leukotriene C4 and structurally related conjugates. 1994 J. Biol. Chem. pmid:7961706
Bannenberg G et al. Leukotriene C4 is a tight-binding inhibitor of microsomal glutathione transferase-1. Effects of leukotriene pathway modifiers. 1999 J. Biol. Chem. pmid:9890956
Bukiya AN et al. Activation of calcium- and voltage-gated potassium channels of large conductance by leukotriene B4. 2014 J. Biol. Chem. pmid:25371198
Naik S et al. Regulation of cysteinyl leukotriene type 1 receptor internalization and signaling. 2005 J. Biol. Chem. pmid:15590629
Mezhybovska M et al. The inflammatory mediator leukotriene D4 induces beta-catenin signaling and its association with antiapoptotic Bcl-2 in intestinal epithelial cells. 2006 J. Biol. Chem. pmid:16407243
Heise CE et al. Characterization of the human cysteinyl leukotriene 2 receptor. 2000 J. Biol. Chem. pmid:10851239
Metters KM and Zamboni RJ Photoaffinity labeling of the leukotriene D4 receptor in guinea pig lung. 1993 J. Biol. Chem. pmid:8384212
Hui Y et al. The murine cysteinyl leukotriene 2 (CysLT2) receptor. cDNA and genomic cloning, alternative splicing, and in vitro characterization. 2001 J. Biol. Chem. pmid:11591709
Paruchuri S et al. Leukotriene E4 activates peroxisome proliferator-activated receptor gamma and induces prostaglandin D2 generation by human mast cells. 2008 J. Biol. Chem. pmid:18411276