Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Abortion, Habitual D000026 5 associated lipids
Acidosis D000138 13 associated lipids
Adenocarcinoma D000230 166 associated lipids
Agranulocytosis D000380 7 associated lipids
Airway Obstruction D000402 13 associated lipids
Albuminuria D000419 18 associated lipids
Alcoholic Intoxication D000435 15 associated lipids
Anaphylaxis D000707 35 associated lipids
Anemia D000740 21 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Angina Pectoris D000787 27 associated lipids
Angina Pectoris, Variant D000788 3 associated lipids
Angina, Unstable D000789 14 associated lipids
Hypoxia D000860 23 associated lipids
Aortic Aneurysm D001014 8 associated lipids
Aortic Arch Syndromes D001015 2 associated lipids
Aortic Rupture D001019 3 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Arterial Occlusive Diseases D001157 12 associated lipids
Arteriosclerosis D001161 86 associated lipids
Arteriosclerosis Obliterans D001162 8 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Ascites D001201 25 associated lipids
Asthenia D001247 5 associated lipids
Asthma D001249 52 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Bartter Syndrome D001477 5 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Birth Weight D001724 23 associated lipids
Blister D001768 16 associated lipids
Blood Platelet Disorders D001791 12 associated lipids
Bluetongue D001819 1 associated lipids
Body Weight D001835 333 associated lipids
Bronchial Spasm D001986 18 associated lipids
Bronchitis D001991 6 associated lipids
Bronchopneumonia D001996 7 associated lipids
Bronchopulmonary Dysplasia D001997 4 associated lipids
Bronchopulmonary Sequestration D001998 3 associated lipids
Burns D002056 34 associated lipids
Byssinosis D002095 11 associated lipids
Carbon Monoxide Poisoning D002249 9 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Cat Diseases D002371 12 associated lipids
Cattle Diseases D002418 24 associated lipids
Celiac Disease D002446 16 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Intracranial Embolism and Thrombosis D002542 5 associated lipids
Cerebral Hemorrhage D002543 13 associated lipids
Brain Ischemia D002545 89 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Chediak-Higashi Syndrome D002609 4 associated lipids
Chest Pain D002637 4 associated lipids
Choline Deficiency D002796 16 associated lipids
Cleft Palate D002972 9 associated lipids
Colitis D003092 69 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Contusions D003288 3 associated lipids
Coronary Artery Disease D003324 47 associated lipids
Coronary Disease D003327 70 associated lipids
Coronary Thrombosis D003328 7 associated lipids
Coronary Vasospasm D003329 9 associated lipids
Cough D003371 19 associated lipids
Death, Sudden D003645 12 associated lipids
Dermatitis, Atopic D003876 19 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Diabetes Mellitus, Experimental D003921 85 associated lipids
Diabetes Mellitus, Type 1 D003922 56 associated lipids
Diabetes Mellitus, Type 2 D003924 87 associated lipids
Diabetic Angiopathies D003925 20 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Diabetic Retinopathy D003930 39 associated lipids
Diseases in Twins D004200 4 associated lipids
Disseminated Intravascular Coagulation D004211 7 associated lipids
Drowning D004332 2 associated lipids
Ductus Arteriosus, Patent D004374 5 associated lipids
Edema D004487 152 associated lipids
Edema, Cardiac D004489 1 associated lipids
Embolism, Fat D004620 4 associated lipids
Endometriosis D004715 29 associated lipids
Enteritis D004751 8 associated lipids
Erythromelalgia D004916 1 associated lipids
Escherichia coli Infections D004927 17 associated lipids
Eye Burns D005126 13 associated lipids
Facial Pain D005157 5 associated lipids
Fatty Liver D005234 48 associated lipids
Femoral Fractures D005264 7 associated lipids
Fetal Diseases D005315 8 associated lipids
Fever D005334 35 associated lipids
Fibromuscular Dysplasia D005352 2 associated lipids
Fibrosis D005355 23 associated lipids
Fistula D005402 8 associated lipids
Foot Rot D005535 1 associated lipids
Frostbite D005627 1 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Yu C et al. Effects of danshensu on platelet aggregation and thrombosis: in vivo arteriovenous shunt and venous thrombosis models in rats. 2014 PLoS ONE pmid:25375124
Shimizu T et al. Up-regulation of Kv7.1 channels in thromboxane A2-induced colonic cancer cell proliferation. 2014 Pflugers Arch. pmid:23995773
DeFilippis AP et al. Fatty acids and TxA(2) generation, in the absence of platelet-COX-1 activity. 2014 Nutr Metab Cardiovasc Dis pmid:24370448
Togna AR et al. 4-Methylcoumarin derivatives with anti-inflammatory effects in activated microglial cells. 2014 Biol. Pharm. Bull. pmid:24389482
Osmond DA et al. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. 2014 Am. J. Physiol. Renal Physiol. pmid:24477682
Cathcart MC et al. Thromboxane synthase expression and correlation with VEGF and angiogenesis in non-small cell lung cancer. 2014 Biochim. Biophys. Acta pmid:24480048
Umar A et al. Effect of Ocimum basilicum L. on cyclo-oxygenase isoforms and prostaglandins involved in thrombosis. 2014 J Ethnopharmacol pmid:24412551
Sahota T et al. Model-based analysis of thromboxane Bâ‚‚ and prostaglandin Eâ‚‚ as biomarkers in the safety evaluation of naproxen. 2014 Toxicol. Appl. Pharmacol. pmid:24667227
Gonçalves LH et al. Acetylsalicylic acid therapy: influence of metformin use and other variables on urinary 11-dehydrothromboxane B2 levels. 2014 Clin. Chim. Acta pmid:24316050
Jiménez-Romero C et al. Dactyloditerpenol acetate, a new prenylbisabolane-type diterpene from Aplysia dactylomela with significant in vitro anti-neuroinflammatory activity. 2014 Bioorg. Med. Chem. Lett. pmid:24279991
Lee HI et al. Strongly increased exposure of meloxicam in CYP2C9*3/*3 individuals. 2014 Pharmacogenet. Genomics pmid:24322170
Voisin V et al. Protection of Wistar-Furth rats against postischaemic acute renal injury: role for nitric oxide and thromboxane? 2014 Clin. Exp. Pharmacol. Physiol. pmid:25115485
Chou YI et al. Correlations of platelet-derived microparticles with thromboxane B2, platelet-activating factor, endothelin-1, and neutrophil to lymphocyte ratio in patients with coronary intermediate lesions. 2014 Biomarkers pmid:25391885
Wang Y et al. DanQi Pill protects against heart failure through the arachidonic acid metabolism pathway by attenuating different cyclooxygenases and leukotrienes B4. 2014 BMC Complement Altern Med pmid:24555740
Fuentes E et al. A novel role of Eruca sativa Mill. (rocket) extract: antiplatelet (NF-κB inhibition) and antithrombotic activities. 2014 Nutrients pmid:25514563
Santos-Gallego CG and Badimon JJ The sum of two evils: pneumonia and myocardial infarction: is platelet activation the missing link? 2014 J. Am. Coll. Cardiol. pmid:25444148
Cangemi R et al. Platelet activation is associated with myocardial infarction in patients with pneumonia. 2014 J. Am. Coll. Cardiol. pmid:25444147
Shinohara M et al. Cell-cell interactions and bronchoconstrictor eicosanoid reduction with inhaled carbon monoxide and resolvin D1. 2014 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:25217660
van den Elsen LW et al. Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. 2014 J. Hypertens. pmid:24569415
Reddoch KM et al. Hemostatic function of apheresis platelets stored at 4°C and 22°C. 2014 Shock pmid:24169210