Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Gastric Dilatation D013271 1 associated lipids
Latex Hypersensitivity D020315 1 associated lipids
Stomach Volvulus D013277 1 associated lipids
Foot Rot D005535 1 associated lipids
Frostbite D005627 1 associated lipids
Strongyle Infections, Equine D013319 1 associated lipids
Basal Ganglia Hemorrhage D020145 1 associated lipids
Edema, Cardiac D004489 1 associated lipids
Osteoblastoma D018215 1 associated lipids
Radiculopathy D011843 1 associated lipids
Oligomenorrhea D009839 1 associated lipids
Erythromelalgia D004916 1 associated lipids
Intracranial Hemorrhage, Hypertensive D020299 1 associated lipids
Cholecystitis, Acute D041881 1 associated lipids
Bluetongue D001819 1 associated lipids
Atrial Premature Complexes D018880 1 associated lipids
Heart Septal Defects D006343 2 associated lipids
Retinal Vein Occlusion D012170 2 associated lipids
Weil Disease D014895 2 associated lipids
Pulmonary Heart Disease D011660 2 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Nørregaard R et al. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. 2010 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:20147610
Carroll RC et al. Post interventional cardiology urinary thromboxane correlates with PlateletMapping detected aspirin resistance. 2010 Thromb. Res. pmid:19962724
Dragani A et al. Clinical and laboratory phenotype associated with the aspirin-like defect. 2010 Br. J. Haematol. pmid:19814736
Maddens BE et al. Validation of immunoassays for the candidate renal markers C-reactive protein, immunoglobulin G, thromboxane B2 and retinol binding protein in canine urine. 2010 Vet. Immunol. Immunopathol. pmid:19815297
Derhaschnig U et al. Effects of aspirin and NO-aspirin (NCX 4016) on platelet function and coagulation in human endotoxemia. 2010 Platelets pmid:20608787
Kidson-Gerber G et al. Serum thromboxane B2 compared to five other platelet function tests for the evaluation of aspirin effect in stable cardiovascular disease. 2010 Heart Lung Circ pmid:20144559
Montine TJ et al. Elevated ratio of urinary metabolites of thromboxane and prostacyclin is associated with adverse cardiovascular events in ADAPT. 2010 PLoS ONE pmid:20174466
King JN et al. In vitro and ex vivo inhibition of canine cyclooxygenase isoforms by robenacoxib: a comparative study. 2010 Res. Vet. Sci. pmid:20004922
Zisman E et al. Platelet function recovery after cessation of aspirin: preliminary study of volunteers and surgical patients. 2010 Eur J Anaesthesiol pmid:20035230
Oldenhof J et al. Effect of maximum OTC doses of naproxen sodium or acetaminophen on low-dose aspirin inhibition of serum thromboxane B2. 2010 Curr Med Res Opin pmid:20429831
De la Cruz JP et al. Differences in the in vitro antiplatelet effect of dexibuprofen, ibuprofen, and flurbiprofen in human blood. 2010 Anesth. Analg. pmid:21048099
Qu C et al. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2. 2010 J. Pharmacol. Exp. Ther. pmid:20444882
Renda G et al. Inconsistency of different methods for assessing ex vivo platelet function: relevance for the detection of aspirin resistance. 2010 Haematologica pmid:21123440
Iagoda AV and Gladkikh NN [Thromboxane-prostacyclin balance and platelet aggregability in patients with minor cardiac abnormalities]. 2010 Ter. Arkh. pmid:21086621
Warner JH et al. Adaptive regression modeling of biomarkers of potential harm in a population of U.S. adult cigarette smokers and nonsmokers. 2010 BMC Med Res Methodol pmid:20233412
Bollinger JG et al. Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. 2010 Anal. Chem. pmid:20704368
Antonino MJ et al. Antiplatelet effects of aspirin with phytosterols: comparison with non-enteric coated aspirin alone. 2010 Thromb. Res. pmid:19446864
Iwasaki W et al. Changes in the fatty acid composition of the liver with the administration of N-3 polyunsaturated fatty acids and the effects on warm ischemia/reperfusion injury in the rat liver. 2010 Shock pmid:19543146
Yen PL et al. Effects of deep-frying oil on blood pressure and oxidative stress in spontaneously hypertensive and normotensive rats. 2010 Nutrition pmid:19592221
Santilli F et al. Postprandial hyperglycemia is a determinant of platelet activation in early type 2 diabetes mellitus. 2010 J. Thromb. Haemost. pmid:20088941