Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Airway Obstruction D000402 13 associated lipids
Uremia D014511 33 associated lipids
Stomach Ulcer D013276 75 associated lipids
Kidney Failure, Chronic D007676 51 associated lipids
Diabetes Mellitus D003920 90 associated lipids
Hypoxia D000860 23 associated lipids
Graft Occlusion, Vascular D006083 11 associated lipids
Arrhythmias, Cardiac D001145 42 associated lipids
Adenocarcinoma D000230 166 associated lipids
Ovarian Neoplasms D010051 10 associated lipids
Pain D010146 64 associated lipids
Contusions D003288 3 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Diseases D008171 37 associated lipids
Lung Neoplasms D008175 171 associated lipids
Wounds and Injuries D014947 20 associated lipids
Pleurisy D010998 20 associated lipids
Burns D002056 34 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Armstrong PC et al. Reduction of platelet thromboxane A2 production ex vivo and in vivo by clopidogrel therapy. 2010 J. Thromb. Haemost. pmid:19995405
Nørregaard R et al. Urinary tract obstruction induces transient accumulation of COX-2-derived prostanoids in kidney tissue. 2010 Am. J. Physiol. Regul. Integr. Comp. Physiol. pmid:20147610
Carroll RC et al. Post interventional cardiology urinary thromboxane correlates with PlateletMapping detected aspirin resistance. 2010 Thromb. Res. pmid:19962724
Dragani A et al. Clinical and laboratory phenotype associated with the aspirin-like defect. 2010 Br. J. Haematol. pmid:19814736
Maddens BE et al. Validation of immunoassays for the candidate renal markers C-reactive protein, immunoglobulin G, thromboxane B2 and retinol binding protein in canine urine. 2010 Vet. Immunol. Immunopathol. pmid:19815297
Cholette JM et al. Aspirin resistance following pediatric cardiac surgery. 2010 Thromb. Res. pmid:20550971
Youssef DT et al. New anti-inflammatory sterols from the Red Sea sponges Scalarispongia aqabaensis and Callyspongia siphonella. 2010 Nat Prod Commun pmid:20184014
Kidson-Gerber G et al. Serum thromboxane B2 compared to five other platelet function tests for the evaluation of aspirin effect in stable cardiovascular disease. 2010 Heart Lung Circ pmid:20144559
Montine TJ et al. Elevated ratio of urinary metabolites of thromboxane and prostacyclin is associated with adverse cardiovascular events in ADAPT. 2010 PLoS ONE pmid:20174466
King JN et al. In vitro and ex vivo inhibition of canine cyclooxygenase isoforms by robenacoxib: a comparative study. 2010 Res. Vet. Sci. pmid:20004922
Zisman E et al. Platelet function recovery after cessation of aspirin: preliminary study of volunteers and surgical patients. 2010 Eur J Anaesthesiol pmid:20035230
Oldenhof J et al. Effect of maximum OTC doses of naproxen sodium or acetaminophen on low-dose aspirin inhibition of serum thromboxane B2. 2010 Curr Med Res Opin pmid:20429831
De la Cruz JP et al. Differences in the in vitro antiplatelet effect of dexibuprofen, ibuprofen, and flurbiprofen in human blood. 2010 Anesth. Analg. pmid:21048099
Qu C et al. Chronic inhibition of nitric-oxide synthase potentiates endothelium-dependent contractions in the rat aorta by augmenting the expression of cyclooxygenase-2. 2010 J. Pharmacol. Exp. Ther. pmid:20444882
Renda G et al. Inconsistency of different methods for assessing ex vivo platelet function: relevance for the detection of aspirin resistance. 2010 Haematologica pmid:21123440
Iagoda AV and Gladkikh NN [Thromboxane-prostacyclin balance and platelet aggregability in patients with minor cardiac abnormalities]. 2010 Ter. Arkh. pmid:21086621
Warner JH et al. Adaptive regression modeling of biomarkers of potential harm in a population of U.S. adult cigarette smokers and nonsmokers. 2010 BMC Med Res Methodol pmid:20233412
Bollinger JG et al. Improved sensitivity mass spectrometric detection of eicosanoids by charge reversal derivatization. 2010 Anal. Chem. pmid:20704368
Ge Y et al. [Effect of ulinastatin on thromboxane Bâ‚‚ and deep vein thrombosis in elderly patients after hip joint replacement]. 2010 Zhong Nan Da Xue Xue Bao Yi Xue Ban pmid:21200097
Antonino MJ et al. Antiplatelet effects of aspirin with phytosterols: comparison with non-enteric coated aspirin alone. 2010 Thromb. Res. pmid:19446864