Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Acute Kidney Injury D058186 34 associated lipids
Airway Remodeling D056151 3 associated lipids
Acute Coronary Syndrome D054058 11 associated lipids
Hypoalphalipoproteinemias D052456 5 associated lipids
Atherosclerosis D050197 85 associated lipids
Dyslipidemias D050171 7 associated lipids
Cholecystitis, Acute D041881 1 associated lipids
Pulmonary Disease, Chronic Obstructive D029424 16 associated lipids
Metabolic Syndrome D024821 44 associated lipids
Coronary Stenosis D023921 6 associated lipids
Hypoxia-Ischemia, Brain D020925 22 associated lipids
Stroke D020521 32 associated lipids
Latex Hypersensitivity D020315 1 associated lipids
Intracranial Hemorrhage, Hypertensive D020299 1 associated lipids
Ventricular Remodeling D020257 28 associated lipids
Venous Thrombosis D020246 11 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Carotid Artery Injuries D020212 8 associated lipids
Sleep Apnea, Obstructive D020181 9 associated lipids
Basal Ganglia Hemorrhage D020145 1 associated lipids
Thrombophilia D019851 6 associated lipids
Endotoxemia D019446 27 associated lipids
Pancreatitis, Acute Necrotizing D019283 18 associated lipids
Atrial Premature Complexes D018880 1 associated lipids
Sepsis D018805 11 associated lipids
Systemic Inflammatory Response Syndrome D018746 4 associated lipids
Ventricular Dysfunction, Left D018487 33 associated lipids
Osteoblastoma D018215 1 associated lipids
Aortic Aneurysm, Abdominal D017544 5 associated lipids
Hypertrophy, Left Ventricular D017379 12 associated lipids
beta-Thalassemia D017086 5 associated lipids
Carotid Stenosis D016893 15 associated lipids
Death, Sudden, Cardiac D016757 12 associated lipids
Yang Deficiency D016711 3 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Bronchial Hyperreactivity D016535 15 associated lipids
Peripheral Vascular Diseases D016491 8 associated lipids
Helicobacter Infections D016481 21 associated lipids
Bacteremia D016470 9 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Weight Loss D015431 56 associated lipids
Weight Gain D015430 101 associated lipids
Myocardial Reperfusion Injury D015428 20 associated lipids
Reperfusion Injury D015427 65 associated lipids
Zellweger Syndrome D015211 39 associated lipids
Wounds and Injuries D014947 20 associated lipids
Weil Disease D014895 2 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Vitamin E Deficiency D014811 29 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Wu G et al. Pravastatin inhibits plaque rupture and subsequent thrombus formation in atherosclerotic rabbits with hyperlipidemia. 2013 Chem. Pharm. Bull. pmid:23207681
Shi JJ and Huang LF [Effects of transcutaneous electrical acupoint stimulation of "Zusanli" (ST 36) on gastric mucosal injury in exercise stress-induced gastric ulcer rats]. 2013 Zhen Ci Yan Jiu pmid:24006661
Steib CJ et al. Functional relevance of the cannabinoid receptor 2 - heme oxygenase pathway: a novel target for the attenuation of portal hypertension. 2013 Life Sci. pmid:24007798
DeFilippis AP et al. Thromboxane A(2) generation, in the absence of platelet COX-1 activity, in patients with and without atherothrombotic myocardial infarction. 2013 Circ. J. pmid:23985963
Siennicka A et al. Haemostatic factors and intraluminal thrombus thickness in abdominal aortic aneurysm. Is secondary fibrinolysis relevant? 2013 J. Physiol. Pharmacol. pmid:23959729
Kleinbongard P et al. Aspirate from human stented native coronary arteries vs. saphenous vein grafts: more endothelin but less particulate debris. 2013 Am. J. Physiol. Heart Circ. Physiol. pmid:23934849
Brentnall C et al. Influence of oxytetracycline on carprofen pharmacodynamics and pharmacokinetics in calves. 2013 J. Vet. Pharmacol. Ther. pmid:22913421
Yi X et al. Platelet response to aspirin in Chinese stroke patients is independent of genetic polymorphisms of COX-1 C50T and COX-2 G765C. 2013 J. Atheroscler. Thromb. pmid:22972377
McMahon GS et al. Transient heparin-induced platelet activation linked to generation of platelet 12-lipoxygenase. Findings from a randomised controlled trial. 2013 Thromb. Haemost. pmid:23494053
Dharmasaroja PA et al. Aspirin nonresponders in patients with ischaemic stroke. 2013 Blood Coagul. Fibrinolysis pmid:23429255
Shiraishi M et al. Cholesterol enrichment of rabbit platelets enhances the Ca(2+) entry pathway induced by platelet-derived secondary feedback agonists. 2013 Life Sci. pmid:23499558
Maenthaisong R et al. Clinical pharmacology of cyclooxygenase inhibition and pharmacodynamic interaction with aspirin by floctafenine in Thai healthy subjects. 2013 Apr-Jun Int J Immunopathol Pharmacol pmid:23755755
Dudley A et al. Cyclooxygenase expression and platelet function in healthy dogs receiving low-dose aspirin. 2013 Jan-Feb J. Vet. Intern. Med. pmid:23278865
John F et al. Elevated levels of leukotriene B4 and thromboxane B2 distinguish chest pain of cardiac and non cardiac origin. 2013 May-Jun Indian Heart J pmid:23809385
Ross S et al. Association of cyclooxygenase-2 genetic variant with cardiovascular disease. 2014 Eur. Heart J. pmid:24796340
Salazar F et al. Renal effects induced by prolonged mPGES1 inhibition. 2014 Am. J. Physiol. Renal Physiol. pmid:24197070
Kawai VK et al. Suboptimal inhibition of platelet cyclooxygenase 1 by aspirin in systemic lupus erythematosus: association with metabolic syndrome. 2014 Arthritis Care Res (Hoboken) pmid:24022862
Elsheikh W et al. Enhanced chemopreventive effects of a hydrogen sulfide-releasing anti-inflammatory drug (ATB-346) in experimental colorectal cancer. 2014 Nitric Oxide pmid:24747869
Suarez-Kurtz G Impact of CYP2C9*3/*3 genotype on the pharmacokinetics and pharmacodynamics of oxicam NSAIDs. 2014 Pharmacogenet. Genomics pmid:25003537
Lee HI et al. Response to Suarez-Kurtz's comments on strongly increased exposure of meloxicam in CYP2C9*3/*3 individuals. 2014 Pharmacogenet. Genomics pmid:25003538
Shan MQ et al. [Comparative study on effects of Rubiae Radix et Rhizoma and carbonized Rubiae Radix et Rhizoma on acute blood stasis rat model]. 2014 Zhongguo Zhong Yao Za Zhi pmid:24946554
Zhou K et al. A CAPE analogue as novel antiplatelet agent efficiently inhibits collagen-induced platelet aggregation. 2014 Pharmazie pmid:25158573
Maurer K et al. Acetylsalicylic acid enhances tachyphylaxis of repetitive capsaicin responses in TRPV1-GFP expressing HEK293 cells. 2014 Neurosci. Lett. pmid:24495935
Shimizu T et al. Up-regulation of Kv7.1 channels in thromboxane A2-induced colonic cancer cell proliferation. 2014 Pflugers Arch. pmid:23995773
DeFilippis AP et al. Fatty acids and TxA(2) generation, in the absence of platelet-COX-1 activity. 2014 Nutr Metab Cardiovasc Dis pmid:24370448
Togna AR et al. 4-Methylcoumarin derivatives with anti-inflammatory effects in activated microglial cells. 2014 Biol. Pharm. Bull. pmid:24389482
Osmond DA et al. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. 2014 Am. J. Physiol. Renal Physiol. pmid:24477682
Cathcart MC et al. Thromboxane synthase expression and correlation with VEGF and angiogenesis in non-small cell lung cancer. 2014 Biochim. Biophys. Acta pmid:24480048
Umar A et al. Effect of Ocimum basilicum L. on cyclo-oxygenase isoforms and prostaglandins involved in thrombosis. 2014 J Ethnopharmacol pmid:24412551
Chou YI et al. Correlations of platelet-derived microparticles with thromboxane B2, platelet-activating factor, endothelin-1, and neutrophil to lymphocyte ratio in patients with coronary intermediate lesions. 2014 Biomarkers pmid:25391885
Zhu Y et al. Effects and mechanisms of Fenofibrate on the secretion of vascular endothelial contraction factors in hypertensive rats. 2014 Genet. Mol. Res. pmid:25078582
Tachi M et al. Mass spectrometric determination of prostanoids in rat hypothalamic paraventricular nucleus microdialysates. 2014 Auton Neurosci pmid:24447364
Montserrat-de la Paz S et al. Long-chain fatty alcohols from evening primrose oil inhibit the inflammatory response in murine peritoneal macrophages. 2014 J Ethnopharmacol pmid:24239848
Wang Y et al. DanQi Pill protects against heart failure through the arachidonic acid metabolism pathway by attenuating different cyclooxygenases and leukotrienes B4. 2014 BMC Complement Altern Med pmid:24555740
Fuentes E et al. A novel role of Eruca sativa Mill. (rocket) extract: antiplatelet (NF-κB inhibition) and antithrombotic activities. 2014 Nutrients pmid:25514563
Santos-Gallego CG and Badimon JJ The sum of two evils: pneumonia and myocardial infarction: is platelet activation the missing link? 2014 J. Am. Coll. Cardiol. pmid:25444148
Cangemi R et al. Platelet activation is associated with myocardial infarction in patients with pneumonia. 2014 J. Am. Coll. Cardiol. pmid:25444147
Hong S et al. Maresin-like lipid mediators are produced by leukocytes and platelets and rescue reparative function of diabetes-impaired macrophages. 2014 Chem. Biol. pmid:25200603
Tong B et al. [Atorvastatin inhibits platelet aggregation and activation following carotid balloon injury in cholesterol-fed rabbits]. 2014 Nan Fang Yi Ke Da Xue Xue Bao pmid:25176087
Kaplon-Cieslicka A et al. Younger age, higher body mass index and lower adiponectin concentration predict higher serum thromboxane B2 level in aspirin-treated patients with type 2 diabetes: an observational study. 2014 Cardiovasc Diabetol pmid:25123549
Hayashi G et al. Frataxin deficiency increases cyclooxygenase 2 and prostaglandins in cell and animal models of Friedreich's ataxia. 2014 Hum. Mol. Genet. pmid:25104852
Floyd CN et al. Increased platelet expression of glycoprotein IIIa following aspirin treatment in aspirin-resistant but not aspirin-sensitive subjects. 2014 Br J Clin Pharmacol pmid:25099258
Zhu SH et al. Protective effect of indomethacin in renal ischemia-reperfusion injury in mice. 2014 J Zhejiang Univ Sci B pmid:25091992
Basili S et al. Aspirin reload before elective percutaneous coronary intervention: impact on serum thromboxane b2 and myocardial reperfusion indexes. 2014 Circ Cardiovasc Interv pmid:25074252
Lattanzio S et al. Circulating dickkopf-1 in diabetes mellitus: association with platelet activation and effects of improved metabolic control and low-dose aspirin. 2014 J Am Heart Assoc pmid:25037197
Santilli F et al. Circulating myeloid-related protein-8/14 is related to thromboxane-dependent platelet activation in patients with acute coronary syndrome, with and without ongoing low-dose aspirin treatment. 2014 J Am Heart Assoc pmid:25037196
Patrignani P et al. Reappraisal of the clinical pharmacology of low-dose aspirin by comparing novel direct and traditional indirect biomarkers of drug action. 2014 J. Thromb. Haemost. pmid:24942808
Mayer AM et al. Vibrio vulnificus MO6-24/O lipopolysaccharide stimulates superoxide anion, thromboxane Bâ‚‚, matrix metalloproteinase-9, cytokine and chemokine release by rat brain microglia in vitro. 2014 Mar Drugs pmid:24675728
van den Elsen LW et al. Dietary fish oil improves endothelial function and lowers blood pressure via suppression of sphingolipid-mediated contractions in spontaneously hypertensive rats. 2014 J. Hypertens. pmid:24569415
Reddoch KM et al. Hemostatic function of apheresis platelets stored at 4°C and 22°C. 2014 Shock pmid:24169210