Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Bacteremia D016470 9 associated lipids
Peripheral Vascular Diseases D016491 8 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Diabetes, Gestational D016640 8 associated lipids
Carotid Artery Injuries D020212 8 associated lipids
Obesity, Morbid D009767 8 associated lipids
Fistula D005402 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Mastitis, Bovine D008414 8 associated lipids
Renal Artery Obstruction D012078 8 associated lipids
Enteritis D004751 8 associated lipids
Fetal Diseases D005315 8 associated lipids
Aortic Aneurysm D001014 8 associated lipids
Lupus Nephritis D008181 8 associated lipids
Arteriosclerosis Obliterans D001162 8 associated lipids
Femoral Fractures D005264 7 associated lipids
Raynaud Disease D011928 7 associated lipids
Bronchopneumonia D001996 7 associated lipids
Tachycardia D013610 7 associated lipids
Dyslipidemias D050171 7 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Jiang J et al. Effect of Marine-Derived n-3 Polyunsaturated Fatty Acids on Major Eicosanoids: A Systematic Review and Meta-Analysis from 18 Randomized Controlled Trials. 2016 PLoS ONE pmid:26808318
Santilli F et al. Pentraxin 3 and Platelet Activation in Obese Patients After Gastric Banding. 2016 Circ. J. pmid:26632534
Mayer AM et al. Classical and Alternative Activation of Cyanobacterium Oscillatoria sp. Lipopolysaccharide-Treated Rat Microglia in vitro. 2016 Toxicol. Sci. pmid:26609141
Siewiera K et al. Long-term untreated streptozotocin-diabetes leads to increased expression and elevated activity of prostaglandin H2 synthase in blood platelets. 2016 Platelets pmid:26325148
Zhou Z et al. Mechanisms underlying uridine adenosine tetraphosphate-induced vascular contraction in mouse aorta: Role of thromboxane and purinergic receptors. 2015 Vascul. Pharmacol. pmid:25921923
Larsen SB et al. Calprotectin and platelet aggregation in patients with stable coronary artery disease. 2015 PLoS ONE pmid:25970343
Lourenço AL et al. Synthesis and antiplatelet activity of antithrombotic thiourea compounds: biological and structure-activity relationship studies. 2015 Molecules pmid:25903367
Voon PT et al. Virgin olive oil, palm olein and coconut oil diets do not raise cell adhesion molecules and thrombogenicity indices in healthy Malaysian adults. 2015 Eur J Clin Nutr pmid:25804278
Willenberg I et al. Determining cyclooxygenase-2 activity in three different test systems utilizing online-solid phase extraction-liquid chromatography-mass spectrometry for parallel quantification of prostaglandin E(2), D(2) and thromboxane B(2). 2015 J Chromatogr A pmid:25777050
Wang J et al. Prevention of atherosclerosis by Yindan Xinnaotong capsule combined with swimming in rats. 2015 BMC Complement Altern Med pmid:25886942