Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Periapical Periodontitis D010485 6 associated lipids
Placenta Diseases D010922 5 associated lipids
Platelet Storage Pool Deficiency D010981 3 associated lipids
Pleurisy D010998 20 associated lipids
Pneumonia D011014 10 associated lipids
Pneumonia, Aspiration D011015 3 associated lipids
Pneumonia, Viral D011024 3 associated lipids
Polycythemia Vera D011087 13 associated lipids
Adenomatous Polyposis Coli D011125 16 associated lipids
Pregnancy Complications D011248 19 associated lipids
Pregnancy Complications, Cardiovascular D011249 11 associated lipids
Pregnancy Complications, Hematologic D011250 11 associated lipids
Proteinuria D011507 30 associated lipids
Pulmonary Edema D011654 23 associated lipids
Pulmonary Embolism D011655 5 associated lipids
Pulmonary Heart Disease D011660 2 associated lipids
Purpura, Schoenlein-Henoch D011695 5 associated lipids
Purpura, Thrombotic Thrombocytopenic D011697 6 associated lipids
Radiation Injuries, Experimental D011833 11 associated lipids
Radiculopathy D011843 1 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Olszowski T et al. The Effect of Cadmium on COX-1 and COX-2 Gene, Protein Expression, and Enzymatic Activity in THP-1 Macrophages. 2015 Biol Trace Elem Res pmid:25645360
Al-Husseini A et al. Increased eicosanoid levels in the Sugen/chronic hypoxia model of severe pulmonary hypertension. 2015 PLoS ONE pmid:25785937
Mateu A et al. Cross-talk between TLR4 and PPARγ pathways in the arachidonic acid-induced inflammatory response in pancreatic acini. 2015 Int. J. Biochem. Cell Biol. pmid:26510582
Savas G and Kalay N Myocardial infarction in patients with pneumonia. 2015 J. Am. Coll. Cardiol. pmid:25857921
Santos-Gallego CG and Badimon J Reply: platelets interplay between pneumonia and cardiovascular events: establishing a link? 2015 J. Am. Coll. Cardiol. pmid:25857920
Violi F et al. Reply: platelets interplay between pneumonia and cardiovascular events: establishing a link? 2015 J. Am. Coll. Cardiol. pmid:25857919
Khan AR et al. Platelet activation and myocardial infarction in patients with pneumonia: are statins the answer? 2015 J. Am. Coll. Cardiol. pmid:25857918
Gavriilaki E et al. Platelets interplay between pneumonia and cardiovascular events: establishing a link? 2015 J. Am. Coll. Cardiol. pmid:25857917
Véricel E et al. Moderate oral supplementation with docosahexaenoic acid improves platelet function and oxidative stress in type 2 diabetic patients. 2015 Thromb. Haemost. pmid:25832443
Khanna V et al. Does the response to aspirin and clopidogrel vary over 6 months in patients with ischemic heart disease? 2015 J. Thromb. Haemost. pmid:25809653