Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Arteriosclerosis Obliterans D001162 8 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Ascites D001201 25 associated lipids
Asthenia D001247 5 associated lipids
Asthma D001249 52 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Bartter Syndrome D001477 5 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Birth Weight D001724 23 associated lipids
Blister D001768 16 associated lipids
Blood Platelet Disorders D001791 12 associated lipids
Bluetongue D001819 1 associated lipids
Body Weight D001835 333 associated lipids
Bronchial Spasm D001986 18 associated lipids
Bronchitis D001991 6 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Olson MT et al. Effect of assay specificity on the association of urine 11-dehydro thromboxane B2 determination with cardiovascular risk. 2012 J. Thromb. Haemost. pmid:23072449
Alizzi AM et al. Reduction of post-surgical pericardial adhesions using a pig model. 2012 Heart Lung Circ pmid:22078313
Hui C et al. Changes in coagulation and hemodynamics during pregnancy: a prospective longitudinal study of 58 cases. 2012 Arch. Gynecol. Obstet. pmid:22083312
Hu YY et al. Six alkaloids inhibit secretion of IL-1α, TXB(2), ET-1 and E-selectin in LPS-induced endothelial cells. 2012 Immunol. Invest. pmid:22087636
Shoeb M and Ramana KV Anti-inflammatory effects of benfotiamine are mediated through the regulation of the arachidonic acid pathway in macrophages. 2012 Free Radic. Biol. Med. pmid:22067901
Li C et al. Reversal of the anti-platelet effects of aspirin and clopidogrel. 2012 J. Thromb. Haemost. pmid:22268852
Rodríguez-Vilarrupla A et al. PPARα activation improves endothelial dysfunction and reduces fibrosis and portal pressure in cirrhotic rats. 2012 J. Hepatol. pmid:22245887
Mullins KB et al. Effects of carprofen, meloxicam and deracoxib on platelet function in dogs. 2012 Vet Anaesth Analg pmid:22248445
Bednar F et al. Evaluation of aspirin's effect on platelet function early after coronary artery bypass grafting. 2012 J. Cardiothorac. Vasc. Anesth. pmid:22281116
Cathcart CJ et al. Lack of inhibitory effect of acetylsalicylic acid and meloxicam on whole blood platelet aggregation in cats. 2012 J Vet Emerg Crit Care (San Antonio) pmid:22316324
Mo J et al. Expression of interleukin-18 in a rat model of deep vein thrombosis. 2012 J Cardiovasc Surg (Torino) pmid:22318348
Hartanto MD et al. Urinary 11-dehydro-thromboxane B₂ and 2,3-dinor-6-keto-prostaglandin-F₁α in healthy post-menopausal and pre-menopausal women receiving aspirin 100 mg. 2012 J. Thromb. Thrombolysis pmid:22311294
Smith JP et al. Suboptimal inhibition of platelet cyclooxygenase-1 by aspirin in metabolic syndrome. 2012 Hypertension pmid:22311905
Shatoor AS et al. Effect of Hawthorn (Crataegus aronia syn. Azarolus (L)) on platelet function in albino Wistar rats. 2012 Thromb. Res. pmid:22261477
Brentnall C et al. Potency and selectivity of carprofen enantiomers for inhibition of bovine cyclooxygenase in whole blood assays. 2012 Res. Vet. Sci. pmid:22703724
Peters SM et al. In vivo characterization of inflammatory biomarkers in swine and the impact of flunixin meglumine administration. 2012 Vet. Immunol. Immunopathol. pmid:22648045
Zhou MT et al. Continuous regional arterial infusion with fluorouracil and octreotide attenuates severe acute pancreatitis in a canine model. 2012 PLoS ONE pmid:22655040
Saadawi S et al. Inhibitory effects of acetylmelodorinol, chrysin and polycarpol from Mitrella kentii on prostaglandin Eâ‚‚ and Thromboxane Bâ‚‚ production and platelet activating factor receptor binding. 2012 Molecules pmid:22538486
Sadilkova L et al. The purification step is not crucial in EIA measurements of thromboxane B2 and 11-dehydrothromboxane B2 in human plasma. 2012 Clin. Lab. pmid:22372363
Liou JT et al. Levobupivacaine differentially suppresses platelet aggregation by modulating calcium release in a dose-dependent manner. 2012 Acta Anaesthesiol Taiwan pmid:23026170