Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Arteriosclerosis Obliterans D001162 8 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Ascites D001201 25 associated lipids
Asthenia D001247 5 associated lipids
Asthma D001249 52 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Bartter Syndrome D001477 5 associated lipids
Behcet Syndrome D001528 7 associated lipids
Biliary Tract Neoplasms D001661 7 associated lipids
Birth Weight D001724 23 associated lipids
Blister D001768 16 associated lipids
Blood Platelet Disorders D001791 12 associated lipids
Bluetongue D001819 1 associated lipids
Body Weight D001835 333 associated lipids
Bronchial Spasm D001986 18 associated lipids
Bronchitis D001991 6 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Togna AR et al. 4-Methylcoumarin derivatives with anti-inflammatory effects in activated microglial cells. 2014 Biol. Pharm. Bull. pmid:24389482
Osmond DA et al. Clopidogrel preserves whole kidney autoregulatory behavior in ANG II-induced hypertension. 2014 Am. J. Physiol. Renal Physiol. pmid:24477682
Reddoch KM et al. Hemostatic function of apheresis platelets stored at 4°C and 22°C. 2014 Shock pmid:24169210
John F et al. Elevated levels of leukotriene B4 and thromboxane B2 distinguish chest pain of cardiac and non cardiac origin. 2013 May-Jun Indian Heart J pmid:23809385
Dudley A et al. Cyclooxygenase expression and platelet function in healthy dogs receiving low-dose aspirin. 2013 Jan-Feb J. Vet. Intern. Med. pmid:23278865
Maenthaisong R et al. Clinical pharmacology of cyclooxygenase inhibition and pharmacodynamic interaction with aspirin by floctafenine in Thai healthy subjects. 2013 Apr-Jun Int J Immunopathol Pharmacol pmid:23755755
Nakamura A et al. Oral administration of a novel long-acting prostacyclin agonist with thromboxane synthase inhibitory activity for pulmonary arterial hypertension. 2013 Circ. J. pmid:23676973
Bai L et al. [Effects of electro-acupuncture at Zusanli point on gastric and intestinal blood flow in rats with acute necrotizing pancreatitis]. 2013 Sichuan Da Xue Xue Bao Yi Xue Ban pmid:24490517
Aukema HM et al. Dietary fish oil reduces glomerular injury and elevated renal hydroxyeicosatetraenoic acid levels in the JCR:LA-cp rat, a model of the metabolic syndrome. 2013 Br. J. Nutr. pmid:23151363
Kong X et al. High-mobility-group box protein 1A box reduces development of sodium laurate-induced thromboangiitis obliterans in rats. 2013 J. Vasc. Surg. pmid:23069071