Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Asthma D001249 52 associated lipids
Kidney Diseases D007674 29 associated lipids
Femoral Fractures D005264 7 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Acidosis D000138 13 associated lipids
Glioma D005910 112 associated lipids
Staphylococcal Infections D013203 15 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Ulcer D014456 16 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Thrombosis D013927 49 associated lipids
Hypertension, Pulmonary D006976 32 associated lipids
Endometriosis D004715 29 associated lipids
Uterine Neoplasms D014594 18 associated lipids
Myocardial Infarction D009203 21 associated lipids
Proteinuria D011507 30 associated lipids
Arteriosclerosis D001161 86 associated lipids
Magnesium Deficiency D008275 9 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Fibrosis D005355 23 associated lipids
Anemia, Sickle Cell D000755 34 associated lipids
Fetal Diseases D005315 8 associated lipids
Glomerulonephritis D005921 35 associated lipids
Cerebral Hemorrhage D002543 13 associated lipids
Sepsis D018805 11 associated lipids
Leukopenia D007970 9 associated lipids
Respiratory Insufficiency D012131 10 associated lipids
Erectile Dysfunction D007172 19 associated lipids
Infarction, Middle Cerebral Artery D020244 35 associated lipids
Stroke D020521 32 associated lipids
Liver Cirrhosis, Biliary D008105 12 associated lipids
Hyperlipoproteinemia Type II D006938 22 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Nephrotic Syndrome D009404 11 associated lipids
Brain Ischemia D002545 89 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Respiratory Distress Syndrome, Adult D012128 15 associated lipids
Seizures D012640 87 associated lipids
Peptic Ulcer D010437 19 associated lipids
Birth Weight D001724 23 associated lipids
Hypertension D006973 115 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Glomerulosclerosis, Focal Segmental D005923 4 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Thromboembolism D013923 6 associated lipids
Nasal Polyps D009298 26 associated lipids
Gastrointestinal Diseases D005767 20 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Postula M et al. Association of plasma concentrations of salicylic acid and high on ASA platelet reactivity in type 2 diabetes patients. 2013 Cardiol J pmid:23558875
Jastrzębska M et al. Factors influencing multiplate whole blood impedance platelet aggregometry measurements, during aspirin treatment in acute ischemic stroke: a pilot study. 2013 Blood Coagul. Fibrinolysis pmid:24071649
Lv GY et al. Combined antihypertensive effect of luteolin and buddleoside enriched extracts in spontaneously hypertensive rats. 2013 J Ethnopharmacol pmid:24080032
Li H et al. Select dietary phytochemicals function as inhibitors of COX-1 but not COX-2. 2013 PLoS ONE pmid:24098505
Drew RC et al. Aspirin augments carotid-cardiac baroreflex sensitivity during muscle mechanoreflex and metaboreflex activation in humans. 2013 J. Appl. Physiol. pmid:23970529
Leclerc P et al. Characterization of a human and murine mPGES-1 inhibitor and comparison to mPGES-1 genetic deletion in mouse models of inflammation. 2013 Prostaglandins Other Lipid Mediat. pmid:24045148
Sayers BC et al. Role of cyclooxygenase-2 in exacerbation of allergen-induced airway remodeling by multiwalled carbon nanotubes. 2013 Am. J. Respir. Cell Mol. Biol. pmid:23642096
Vasudevan C et al. The effect of parenteral lipid emulsions on pulmonary hemodynamics and eicosanoid metabolites in preterm infants: a pilot study. 2013 Nutr Clin Pract pmid:24177284
Barillà F et al. Clopidogrel plus indobufen in acute coronary syndrome patients with hypersensitivity to aspirin undergoing percutaneous coronary intervention. 2013 Platelets pmid:22646157
Lino-dos-Santos-Franco A et al. Formaldehyde inhalation reduces respiratory mechanics in a rat model with allergic lung inflammation by altering the nitric oxide/cyclooxygenase-derived products relationship. 2013 Food Chem. Toxicol. pmid:23871789
Wei XJ et al. Effects of carboxymethylpachymaran on signal molecules in chicken immunocytes. 2013 Int. J. Biol. Macromol. pmid:23664932
Kang JW et al. Anti-platelet activity of erythro-(7S,8R)-7-acetoxy-3,4,3',5'-tetramethoxy-8-O-4'-neolignan from Myristica fragrans. 2013 Phytother Res pmid:23296979
Snider AJ et al. Inhibition of sphingosine kinase-2 in a murine model of lupus nephritis. 2013 PLoS ONE pmid:23301082
Xue YT et al. Effect of anger on endothelial-derived vasoactive factors in spontaneously hypertensive rats. 2013 Heart Lung Circ pmid:23261325
Gao H et al. Effects of Yerba Mate tea (Ilex paraguariensis) on vascular endothelial function and liver lipoprotein receptor gene expression in hyperlipidemic rats. 2013 Fitoterapia pmid:23266732
Carroll RC et al. A comparison of VerifyNowR with PlateletMappingR--detected aspirin resistance and correlation with urinary thromboxane. 2013 Anesth. Analg. pmid:23302970
Towhid ST et al. Stimulation of platelet death by vancomycin. 2013 Cell. Physiol. Biochem. pmid:23363637
Ren R et al. Modulation of platelet aggregation-related eicosanoid production by dietary F-fucoidan from brown alga Laminaria japonica in human subjects. 2013 Br. J. Nutr. pmid:23374164
Gautier-Veyret E et al. Intermittent hypoxia-activated cyclooxygenase pathway: role in atherosclerosis. 2013 Eur. Respir. J. pmid:23060635
Xue J et al. Inhibitory effects of Qushuanling Capsule () on thrombus formation and platelet aggregation in rats. 2013 Chin J Integr Med pmid:23001461