Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Arteriosclerosis Obliterans D001162 8 associated lipids
Arthritis D001168 41 associated lipids
Arthritis, Experimental D001169 24 associated lipids
Arthritis, Juvenile D001171 8 associated lipids
Arthus Reaction D001183 8 associated lipids
Ascites D001201 25 associated lipids
Asthenia D001247 5 associated lipids
Asthma D001249 52 associated lipids
Atrial Fibrillation D001281 16 associated lipids
Autoimmune Diseases D001327 27 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Wang JP et al. Antiplatelet effect of hsien-ho-t'sao (Agrimonia pilosa). 1985 Am. J. Chin. Med. pmid:3927704
Yan LG et al. Injectable caltrop fruit saponin protects against ischemia-reperfusion injury in rat brain. 2011 Am. J. Chin. Med. pmid:21476209
Takase B et al. Effects of bepridil on silent myocardial ischemia and eicosanoid metabolism in chronic stable angina pectoris after healing of myocardial infarction. 1994 Am. J. Cardiol. pmid:8198031
Fulton DR et al. Effects of current therapy of Kawasaki disease on eicosanoid metabolism. 1988 Am. J. Cardiol. pmid:2454025
Catella-Lawson F et al. Oral glycoprotein IIb/IIIa antagonism in patients with coronary artery disease. 2001 Am. J. Cardiol. pmid:11472700
Hanet C et al. Myocardial protection by intracoronary nicardipine administration during percutaneous transluminal coronary angioplasty. 1987 Am. J. Cardiol. pmid:2953226
Faraday N et al. Relation between atherosclerosis risk factors and aspirin resistance in a primary prevention population. 2006 Am. J. Cardiol. pmid:16950183
Yasu T et al. Effects of aspirin DL-lysine on thrombin generation in unstable angina pectoris. 1993 Am. J. Cardiol. pmid:8480641
Willerson JT et al. Potential usefulness of combined thromboxane A2 and serotonin receptor blockade for preventing the conversion from chronic to acute coronary artery disease syndromes. 1990 Am. J. Cardiol. pmid:2146868
McDaniel HG et al. Platelet function abnormalities in response to arachidonic acid in the acute phase of myocardial infarction. 1983 Am. J. Cardiol. pmid:6416046
De Caterina R et al. Inhibition of platelet function by injectable isosorbide dinitrate. 1984 Am. J. Cardiol. pmid:6428211
Eldar M et al. Bradykinin level in the great cardiac vein during balloon angioplasty of the left anterior descending coronary artery. 1992 Am. J. Cardiol. pmid:1466338
Dabaghi SF et al. Effects of low-dose aspirin on in vitro platelet aggregation in the early minutes after ingestion in normal subjects. 1994 Am. J. Cardiol. pmid:7942533
Graziani F et al. Thromboxane production in morbidly obese subjects. 2011 Am. J. Cardiol. pmid:21439532
Théroux P et al. Hemodynamic, platelet and clinical responses to prostacyclin in unstable angina pectoris. 1990 Am. J. Cardiol. pmid:2109927
Feldman M and Cryer B Aspirin absorption rates and platelet inhibition times with 325-mg buffered aspirin tablets (chewed or swallowed intact) and with buffered aspirin solution. 1999 Am. J. Cardiol. pmid:10468077
Willerson JT et al. Conversion from chronic to acute coronary artery disease: speculation regarding mechanisms. 1984 Am. J. Cardiol. pmid:6391133
Hirsh PD et al. Effects of provocation on transcardiac thromboxane in patients with coronary artery disease. 1983 Am. J. Cardiol. pmid:6829431
Walinsky P et al. Beneficial effects of ibuprofen in pacing-induced myocardial ischemia. 1983 Am. J. Cardiol. pmid:6829434
Milani M et al. Effects of fluvastatin and pravastatin on lipid profiles and thromboxane production in type IIa hypercholesterolemia. 1995 Am. J. Cardiol. pmid:7604798
Roy L et al. Increased plasma concentrations of prostacyclin metabolite 6-keto-PGF1 alpha in essential hypertension. Influence of therapy with labetalol. 1983 Am. J. Cardiol. pmid:6823861
Shen H et al. Aspirin Resistance in healthy drug-naive men versus women (from the Heredity and Phenotype Intervention Heart Study). 2009 Am. J. Cardiol. pmid:19660620
Lam JY et al. Platelet aggregation, coronary artery disease progression and future coronary events. 1994 Am. J. Cardiol. pmid:8109546
Timmermans C et al. Ridogrel in the setting of percutaneous transluminal coronary angioplasty. 1991 Am. J. Cardiol. pmid:1872272
Mason PJ et al. Plasma, serum, and platelet expression of CD40 ligand in adults with cardiovascular disease. 2005 Am. J. Cardiol. pmid:16275179
Rehr RB et al. Mechanism of nitroglycerin-induced coronary dilatation: lack of relation to intracoronary thromboxane concentrations. 1984 Am. J. Cardiol. pmid:6437206
Montalescot G et al. Early thromboxane release during pacing-induced myocardial ischemia with angiographically normal coronary arteries. 1990 Am. Heart J. pmid:2248190
Hirsh PD et al. Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. 1982 Am. Heart J. pmid:7102506
Smith EF and Lefer AM Stabilization of cardiac lysosomal and cellular membranes in protection of ischemic myocardium due to coronary occlusion:efficacy of the nonsteroidal anti-inflammatory agent, naproxen. 1981 Am. Heart J. pmid:7211667
Nakashima Y et al. Sustained-release nifedipine (nifedipine-L) suppresses plasma thromboxane B2 and 6-keto prostaglandin F1 alpha in both young male smokers and nonsmokers. 1990 Am. Heart J. pmid:2353613
Ikonomidis I et al. Cigarette smoking is associated with increased circulating proinflammatory and procoagulant markers in patients with chronic coronary artery disease: effects of aspirin treatment. 2005 Am. Heart J. pmid:15894964
Kishi Y et al. Inhibition of platelet aggregation by prostacyclin is attenuated after exercise in patients with angina pectoris. 1992 Am. Heart J. pmid:1736562
Tomoda H Development of an experimental model of acute myocardial infarction and the effects of a thromboxane synthetase inhibitor (OKY-046). 1986 Am. Heart J. pmid:3532743
Nitz RE and Martorana PA The activity of molsidomine in experimental models of ischemic cardiac disease. 1985 Am. Heart J. pmid:3919549
Buchanan MR et al. Effect of nafazatrom on platelet function and release: relationship to symptomatic episodes in patients with peripheral vascular disease. 1987 Am. Heart J. pmid:2953219
Walinsky P et al. Thromboxane A2 in acute myocardial infarction. 1984 Am. Heart J. pmid:6485997
Rubenstein MD et al. Platelet activation in clinical coronary artery disease and spasm. 1981 Am. Heart J. pmid:6455912
De Caterina R et al. Inhibition of platelet function during in vivo infusion of isosorbide mononitrates: relationship between plasma drug concentration and hemodynamic effects. 1990 Am. Heart J. pmid:2321506
Buerke M et al. Aspirin therapy: optimized platelet inhibition with different loading and maintenance doses. 1995 Am. Heart J. pmid:7661062
De Servi S et al. Coronary vasoconstrictor response to cold pressor test in variant angina: lack of relation to intracoronary thromboxane concentrations. 1987 Am. Heart J. pmid:3630891
Cotter G et al. Lack of aspirin effect: aspirin resistance or resistance to taking aspirin? 2004 Am. Heart J. pmid:14760328
Mehta J and Mehta P Prostacyclin and thromboxane A2 production by human cardiac atrial tissues. 1985 Am. Heart J. pmid:3880988
Friedrich T et al. Follow-up of prostaglandin plasma levels after acute myocardial infarction. 1985 Am. Heart J. pmid:3880994
O'Connor KM et al. The effect of thromboxane inhibition on vulnerability to ventricular fibrillation in the acute and chronic feline infarction models. 1989 Am. Heart J. pmid:2929400
Zhu BQ and Parmley WW Modification of experimental and clinical atherosclerosis by dietary fish oil. 1990 Am. Heart J. pmid:2105047
O'Connor KM et al. Effect of thromboxane synthetase inhibition on vulnerability to ventricular arrhythmia following coronary occlusion. 1986 Am. Heart J. pmid:3953390
Austin JC et al. Thromboxane synthetase inhibition reduces ventricular irritability after coronary occlusion and reperfusion. 1988 Am. Heart J. pmid:3344655
Arora RR et al. Laser-induced stimulation of thromboxane B2 synthesis in human blood platelets: role of superoxide radicals. 1993 Am. Heart J. pmid:8381256
Jouve R et al. Thromboxane B2, 6-keto-PGF1 alpha, PGE2, PGF2 alpha, and PGA1 plasma levels in arteriosclerosis obliterans: relationship to clinical manifestations, risk factors, and arterial pathoanatomy. 1984 Am. Heart J. pmid:6581715
Rebuzzi AG et al. Importance of reperfusion on thromboxane A2 metabolite excretion after thrombolysis. 1992 Am. Heart J. pmid:1539506