Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Bronchopneumonia D001996 7 associated lipids
Bronchopulmonary Dysplasia D001997 4 associated lipids
Bronchopulmonary Sequestration D001998 3 associated lipids
Burns D002056 34 associated lipids
Byssinosis D002095 11 associated lipids
Carbon Monoxide Poisoning D002249 9 associated lipids
Carcinoma, Non-Small-Cell Lung D002289 72 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Cat Diseases D002371 12 associated lipids
Cattle Diseases D002418 24 associated lipids
Celiac Disease D002446 16 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Intracranial Embolism and Thrombosis D002542 5 associated lipids
Cerebral Hemorrhage D002543 13 associated lipids
Brain Ischemia D002545 89 associated lipids
Ischemic Attack, Transient D002546 42 associated lipids
Cerebrovascular Disorders D002561 25 associated lipids
Chediak-Higashi Syndrome D002609 4 associated lipids
Chest Pain D002637 4 associated lipids
Choline Deficiency D002796 16 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Hirsh PD et al. Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. 1982 Am. Heart J. pmid:7102506
Smith EF and Lefer AM Stabilization of cardiac lysosomal and cellular membranes in protection of ischemic myocardium due to coronary occlusion:efficacy of the nonsteroidal anti-inflammatory agent, naproxen. 1981 Am. Heart J. pmid:7211667
Nakashima Y et al. Sustained-release nifedipine (nifedipine-L) suppresses plasma thromboxane B2 and 6-keto prostaglandin F1 alpha in both young male smokers and nonsmokers. 1990 Am. Heart J. pmid:2353613
Ikonomidis I et al. Cigarette smoking is associated with increased circulating proinflammatory and procoagulant markers in patients with chronic coronary artery disease: effects of aspirin treatment. 2005 Am. Heart J. pmid:15894964
Nitz RE and Martorana PA The activity of molsidomine in experimental models of ischemic cardiac disease. 1985 Am. Heart J. pmid:3919549
Buchanan MR et al. Effect of nafazatrom on platelet function and release: relationship to symptomatic episodes in patients with peripheral vascular disease. 1987 Am. Heart J. pmid:2953219
De Caterina R et al. Inhibition of platelet function during in vivo infusion of isosorbide mononitrates: relationship between plasma drug concentration and hemodynamic effects. 1990 Am. Heart J. pmid:2321506
Buerke M et al. Aspirin therapy: optimized platelet inhibition with different loading and maintenance doses. 1995 Am. Heart J. pmid:7661062
Mehta J et al. Thromboxane release in coronary artery disease: spontaneous versus pacing-induced angina. 1984 Am. Heart J. pmid:6695662
Cotter G et al. Lack of aspirin effect: aspirin resistance or resistance to taking aspirin? 2004 Am. Heart J. pmid:14760328
Mehta J and Mehta P Prostacyclin and thromboxane A2 production by human cardiac atrial tissues. 1985 Am. Heart J. pmid:3880988
Friedrich T et al. Follow-up of prostaglandin plasma levels after acute myocardial infarction. 1985 Am. Heart J. pmid:3880994
O'Connor KM et al. The effect of thromboxane inhibition on vulnerability to ventricular fibrillation in the acute and chronic feline infarction models. 1989 Am. Heart J. pmid:2929400
Zhu BQ and Parmley WW Modification of experimental and clinical atherosclerosis by dietary fish oil. 1990 Am. Heart J. pmid:2105047
Neri Serneri GG et al. Abnormal cardiocoronary thromboxane A2 production in patients with unstable angina. 1985 Am. Heart J. pmid:3984828
Roy L et al. Lack of efficacy of nafazatrom, a novel anti-thrombotic compound, in patients with coronary artery disease. 1985 Am. Heart J. pmid:3158183
Yamada Y et al. Possible mechanism of vascular reocclusion after initially successful thrombolysis with recombinant tissue-type plasminogen activator. 1991 Am. Heart J. pmid:1903579
FitzGerald GA et al. Cigarette smoking and hemostatic function. 1988 Am. Heart J. pmid:3276116
Jouve R et al. Thromboxane B2, 6-keto-PGF1 alpha, PGE2, PGF2 alpha, and PGA1 plasma levels in arteriosclerosis obliterans: relationship to clinical manifestations, risk factors, and arterial pathoanatomy. 1984 Am. Heart J. pmid:6581715
Rebuzzi AG et al. Importance of reperfusion on thromboxane A2 metabolite excretion after thrombolysis. 1992 Am. Heart J. pmid:1539506