Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
Asthma D001249 52 associated lipids
Kidney Diseases D007674 29 associated lipids
Femoral Fractures D005264 7 associated lipids
Weight Gain D015430 101 associated lipids
Hyperemia D006940 25 associated lipids
Cardiovascular Diseases D002318 24 associated lipids
Acidosis D000138 13 associated lipids
Glioma D005910 112 associated lipids
Staphylococcal Infections D013203 15 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Yamanobe S et al. Analysis of urinary 11-dehydrothromboxane B2 in patients with occluded retinal vein using GC/SIM. 1998 Prostaglandins Leukot. Essent. Fatty Acids pmid:9482168
Chang MC et al. Antithrombotic effect of crotalin, a platelet membrane glycoprotein Ib antagonist from venom of Crotalus atrox. 1998 Blood pmid:9473223
Fujita M et al. Effects of a specific cysteinyl leukotriene antagonist, pranlukast, on antigen-induced cysteinyl leukotriene-mediated rhinitis in guinea pigs. 1997 Jpn. J. Pharmacol. pmid:9469640
Fadok VA et al. Macrophages that have ingested apoptotic cells in vitro inhibit proinflammatory cytokine production through autocrine/paracrine mechanisms involving TGF-beta, PGE2, and PAF. 1998 J. Clin. Invest. pmid:9466984
Kruse-Elliott KT et al. Role of lipid-derived mediators in tumor necrosis factor-induced endothelin-1 release in vivo. 1998 Shock pmid:9466472
Liao CH et al. Bakkenolide G, a natural PAF-receptor antagonist. 1997 J. Pharm. Pharmacol. pmid:9466352
Keen HL et al. Maintenance of baseline angiotensin II potentiates insulin hypertension in rats. 1998 Hypertension pmid:9461234
Forastiero R et al. Anti-beta2 glycoprotein I antibodies and platelet activation in patients with antiphospholipid antibodies: association with increased excretion of platelet-derived thromboxane urinary metabolites. 1998 Thromb. Haemost. pmid:9459320
Robbins DL et al. Effect of anticardiolipin/beta2-glycoprotein I complexes on production of thromboxane A2 by platelets from patients with the antiphospholipid syndrome. 1998 J. Rheumatol. pmid:9458202
Hanaoka M et al. Effect of post-treatment with granulocyte colony-stimulating factor on endotoxin-induced lung injury in sheep. 1998 Jan-Feb Exp. Lung Res. pmid:9457466