Thromboxane b2

Thromboxane b2 is a lipid of Fatty Acyls (FA) class. Thromboxane b2 is associated with abnormalities such as endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia and Thrombocytosis. The involved functions are known as Platelet Activation, Excretory function, Anabolism, Inflammation and mRNA Expression. Thromboxane b2 often locates in Endothelium, Hepatic and Microsomes, Liver. The associated genes with Thromboxane b2 are PTGS2 gene, prothrombin fragment 2 and CCL14 wt Allele.

Cross Reference

Introduction

To understand associated biological information of Thromboxane b2, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Thromboxane b2?

Thromboxane b2 is suspected in endothelial dysfunction, Diabetes Mellitus, Non-Insulin-Dependent, Diabetes Mellitus, Ischemia, Thrombocytosis, Acute Coronary Syndrome and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Thromboxane b2

MeSH term MeSH ID Detail
beta-Thalassemia D017086 5 associated lipids
Granulomatosis with Polyangiitis D014890 5 associated lipids
Placenta Diseases D010922 5 associated lipids
Thrombophilia D019851 6 associated lipids
Periapical Periodontitis D010485 6 associated lipids
Hyperlipoproteinemia Type IV D006953 6 associated lipids
Glomerulonephritis, Membranous D015433 6 associated lipids
Coronary Stenosis D023921 6 associated lipids
Sneezing D012912 6 associated lipids
Thromboembolism D013923 6 associated lipids
Per page 10 20 50 100 | Total 293

PubChem Associated disorders and diseases

What pathways are associated with Thromboxane b2

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Thromboxane b2?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Thromboxane b2?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

What genes are associated with Thromboxane b2?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Thromboxane b2?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Thromboxane b2

Download all related citations
Per page 10 20 50 100 | Total 6367
Authors Title Published Journal PubMed Link
Montalescot G et al. Early thromboxane release during pacing-induced myocardial ischemia with angiographically normal coronary arteries. 1990 Am. Heart J. pmid:2248190
Hirsh PD et al. Influence of blood sampling site and technique on thromboxane concentrations in patients with ischemic heart disease. 1982 Am. Heart J. pmid:7102506
Ikonomidis I et al. Cigarette smoking is associated with increased circulating proinflammatory and procoagulant markers in patients with chronic coronary artery disease: effects of aspirin treatment. 2005 Am. Heart J. pmid:15894964
Tomoda H Development of an experimental model of acute myocardial infarction and the effects of a thromboxane synthetase inhibitor (OKY-046). 1986 Am. Heart J. pmid:3532743
Buchanan MR et al. Effect of nafazatrom on platelet function and release: relationship to symptomatic episodes in patients with peripheral vascular disease. 1987 Am. Heart J. pmid:2953219
Rubenstein MD et al. Platelet activation in clinical coronary artery disease and spasm. 1981 Am. Heart J. pmid:6455912
De Caterina R et al. Inhibition of platelet function during in vivo infusion of isosorbide mononitrates: relationship between plasma drug concentration and hemodynamic effects. 1990 Am. Heart J. pmid:2321506
Lorenzoni R et al. Short-term prevention of thromboembolic complications in patients with atrial fibrillation with aspirin plus clopidogrel: the Clopidogrel-Aspirin Atrial Fibrillation (CLAAF) pilot study. 2004 Am. Heart J. pmid:15215815
Mehta J et al. Thromboxane release in coronary artery disease: spontaneous versus pacing-induced angina. 1984 Am. Heart J. pmid:6695662
De Servi S et al. Coronary vasoconstrictor response to cold pressor test in variant angina: lack of relation to intracoronary thromboxane concentrations. 1987 Am. Heart J. pmid:3630891
O'Connor KM et al. The effect of thromboxane inhibition on vulnerability to ventricular fibrillation in the acute and chronic feline infarction models. 1989 Am. Heart J. pmid:2929400
Zhu BQ and Parmley WW Modification of experimental and clinical atherosclerosis by dietary fish oil. 1990 Am. Heart J. pmid:2105047
Neri Serneri GG et al. Abnormal cardiocoronary thromboxane A2 production in patients with unstable angina. 1985 Am. Heart J. pmid:3984828
O'Connor KM et al. Effect of thromboxane synthetase inhibition on vulnerability to ventricular arrhythmia following coronary occlusion. 1986 Am. Heart J. pmid:3953390
Roy L et al. Lack of efficacy of nafazatrom, a novel anti-thrombotic compound, in patients with coronary artery disease. 1985 Am. Heart J. pmid:3158183
Austin JC et al. Thromboxane synthetase inhibition reduces ventricular irritability after coronary occlusion and reperfusion. 1988 Am. Heart J. pmid:3344655
Yamada Y et al. Possible mechanism of vascular reocclusion after initially successful thrombolysis with recombinant tissue-type plasminogen activator. 1991 Am. Heart J. pmid:1903579
FitzGerald GA et al. Cigarette smoking and hemostatic function. 1988 Am. Heart J. pmid:3276116
Jouve R et al. Thromboxane B2, 6-keto-PGF1 alpha, PGE2, PGF2 alpha, and PGA1 plasma levels in arteriosclerosis obliterans: relationship to clinical manifestations, risk factors, and arterial pathoanatomy. 1984 Am. Heart J. pmid:6581715
Rebuzzi AG et al. Importance of reperfusion on thromboxane A2 metabolite excretion after thrombolysis. 1992 Am. Heart J. pmid:1539506