14r,15s-epetre

14r,15s-epetre is a lipid of Fatty Acyls (FA) class. 14r,15s-epetre is associated with abnormalities such as Heart failure, Chronic Obstructive Airway Disease, Pneumonia and Fatty Liver. The involved functions are known as chromophore, Stereochemistry, Cell Respiration, cell transformation and oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen. 14r,15s-epetre often locates in Lambda, Cardiovascular system, Blood, Body tissue and Protoplasm. The associated genes with 14r,15s-epetre are CCL2 gene, Cytokine Gene, CYP2C18 gene, CYP2C19 gene and TEK gene. The related lipids are Palmitates.

Cross Reference

Introduction

To understand associated biological information of 14r,15s-epetre, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 14r,15s-epetre?

14r,15s-epetre is suspected in Heart failure, Chronic Obstructive Airway Disease, Pneumonia, Fatty Liver and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 14r,15s-epetre

MeSH term MeSH ID Detail
Coronary Occlusion D054059 4 associated lipids
Lung Injury D055370 14 associated lipids
Pre-Eclampsia D011225 16 associated lipids
Hypertrophy D006984 16 associated lipids
Hyperemia D006940 25 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Brain Ischemia D002545 89 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Insulin Resistance D007333 99 associated lipids
Per page 10 20 | Total 11

PubChem Associated disorders and diseases

What pathways are associated with 14r,15s-epetre

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 14r,15s-epetre?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 14r,15s-epetre?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 14r,15s-epetre?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 14r,15s-epetre?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 14r,15s-epetre?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 14r,15s-epetre

Download all related citations
Per page 10 20 50 100 | Total 232
Authors Title Published Journal PubMed Link
Pavlov TS et al. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). 2011 Am. J. Physiol. Renal Physiol. pmid:21697242
Mitra R et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). 2011 J. Biol. Chem. pmid:21402692
Schebb NH et al. Development of an online SPE-LC-MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors. 2011 Anal Bioanal Chem pmid:21479549
Chen Y et al. 20-Iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. 2011 Biochemistry pmid:21469660
Bukhari IA et al. 14,15-Dihydroxy-eicosa-5(Z)-enoic acid selectively inhibits 14,15-epoxyeicosatrienoic acid-induced relaxations in bovine coronary arteries. 2011 J. Pharmacol. Exp. Ther. pmid:20881018
Sridar C et al. Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. 2011 Drug Metab. Dispos. pmid:21289075
Kopf PG et al. Angiotensin II regulates adrenal vascular tone through zona glomerulosa cell-derived EETs and DHETs. 2011 Hypertension pmid:21199991
Shao J et al. P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. 2011 J. Huazhong Univ. Sci. Technol. Med. Sci. pmid:22038346
Zhu P et al. Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in vivo. 2011 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21798825
Gauthier KM et al. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles. 2011 Am. J. Physiol. Renal Physiol. pmid:21753077
Senouvo FY et al. Improved bioavailability of epoxyeicosatrienoic acids reduces TP-receptor agonist-induced tension in human bronchi. 2011 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:21821730
Sarkar P et al. Differential effect of amyloid β on the cytochrome P450 epoxygenase activity in rat brain. 2011 Neuroscience pmid:21843605
Gross GJ et al. Evidence for a role of opioids in epoxyeicosatrienoic acid-induced cardioprotection in rat hearts. 2010 Am. J. Physiol. Heart Circ. Physiol. pmid:20400686
Merkel MJ et al. Inhibition of soluble epoxide hydrolase preserves cardiomyocytes: role of STAT3 signaling. 2010 Am. J. Physiol. Heart Circ. Physiol. pmid:20008276
Morin C et al. 17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase. 2010 Am. J. Respir. Cell Mol. Biol. pmid:20008283
Yang C et al. 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP(2) receptors in rat mesenteric artery. 2010 Prostaglandins Other Lipid Mediat. pmid:20601071
Imaizumi S et al. L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice. 2010 Drug Metab Lett pmid:20642447
Townsley MI et al. Impact of epoxyeicosatrienoic acids in lung ischemia-reperfusion injury. 2010 Microcirculation pmid:20163540
Planagumà A et al. Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4. 2010 Mucosal Immunol pmid:20130564
Lamb DC et al. Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. 2010 Appl. Environ. Microbiol. pmid:20097805
Behm DJ et al. Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. 2009 J. Pharmacol. Exp. Ther. pmid:18836067
Chen Y et al. 20-125Iodo-14,15-epoxyeicosa-5(Z)-enoic acid: a high-affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. 2009 J. Pharmacol. Exp. Ther. pmid:19762546
Falck JR et al. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surrogates containing epoxide bioisosteres: influence upon vascular relaxation and soluble epoxide hydrolase inhibition. 2009 J. Med. Chem. pmid:19653681
Motoki A et al. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18835921
Terashvili M et al. Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of beta-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray. 2008 J. Pharmacol. Exp. Ther. pmid:18492947
Smith HE et al. Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. 2008 Pharmacogenet. Genomics pmid:18769365
Snider NT et al. The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. 2008 J. Pharmacol. Exp. Ther. pmid:18698000
Morin C et al. CPI-17 silencing-reduced responsiveness in control and TNF-alpha-treated human bronchi. 2008 Am. J. Respir. Cell Mol. Biol. pmid:18757304
Morin C et al. EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. 2008 Am. J. Respir. Cell Mol. Biol. pmid:17872494
Michaelis UR et al. Role of cytochrome P450 2C epoxygenases in hypoxia-induced cell migration and angiogenesis in retinal endothelial cells. 2008 Invest. Ophthalmol. Vis. Sci. pmid:18326754
Ghosh S et al. Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. 2008 Basic Clin. Pharmacol. Toxicol. pmid:18312493
Gross GJ et al. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18441205
Cheranov SY et al. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. 2008 Blood pmid:18408167
Morin C and Rousseau E Effects of 5-oxo-ETE and 14,15-EET on reactivity and Ca2+ sensitivity in guinea pig bronchi. 2007 Prostaglandins Other Lipid Mediat. pmid:17164130
Jiang JG et al. Regulation of endothelial nitric-oxide synthase activity through phosphorylation in response to epoxyeicosatrienoic acids. 2007 Prostaglandins Other Lipid Mediat. pmid:17164144
Morin C et al. Epoxyeicosatrienoic acid relaxing effects involve Ca2+-activated K+ channel activation and CPI-17 dephosphorylation in human bronchi. 2007 Am. J. Respir. Cell Mol. Biol. pmid:17237191
Gross GJ et al. Mechanisms by which epoxyeicosatrienoic acids (EETs) elicit cardioprotection in rat hearts. 2007 J. Mol. Cell. Cardiol. pmid:17217955
Chen J et al. Mitogenic activity and signaling mechanism of 2-(14,15- epoxyeicosatrienoyl)glycerol, a novel cytochrome p450 arachidonate metabolite. 2007 Mol. Cell. Biol. pmid:17283047
Koerner IP et al. Polymorphisms in the human soluble epoxide hydrolase gene EPHX2 linked to neuronal survival after ischemic injury. 2007 J. Neurosci. pmid:17460077
Yang W et al. Characterization of 14,15-epoxyeicosatrienoyl-sulfonamides as 14,15-epoxyeicosatrienoic acid agonists: use for studies of metabolism and ligand binding. 2007 J. Pharmacol. Exp. Ther. pmid:17327488
Ye D et al. Mechanism of rat mesenteric arterial KATP channel activation by 14,15-epoxyeicosatrienoic acid. 2006 Am. J. Physiol. Heart Circ. Physiol. pmid:16537788
Sacerdoti D et al. Rat mesenteric arterial dilator response to 11,12-epoxyeicosatrienoic acid is mediated by activating heme oxygenase. 2006 Am. J. Physiol. Heart Circ. Physiol. pmid:16798831
Campbell WB et al. Regulation of potassium channels in coronary smooth muscle by adenoviral expression of cytochrome P-450 epoxygenase. 2006 Am. J. Physiol. Heart Circ. Physiol. pmid:16143653
Zhang B et al. Fibroblast growth factor-2 is a downstream mediator of phosphatidylinositol 3-kinase-Akt signaling in 14,15-epoxyeicosatrienoic acid-induced angiogenesis. 2006 J. Biol. Chem. pmid:16286479
Fang X et al. 14,15-Dihydroxyeicosatrienoic acid activates peroxisome proliferator-activated receptor-alpha. 2006 Am. J. Physiol. Heart Circ. Physiol. pmid:16113065
Wang XL et al. Inhibition of ATP binding to the carboxyl terminus of Kir6.2 by epoxyeicosatrienoic acids. 2006 Biochim. Biophys. Acta pmid:16904368
Wei S et al. Chiral resolution of the epoxyeicosatrienoic acids, arachidonic acid epoxygenase metabolites. 2006 Anal. Biochem. pmid:16480681
Spiecker M and Liao JK Vascular protective effects of cytochrome p450 epoxygenase-derived eicosanoids. 2005 Arch. Biochem. Biophys. pmid:15581597
Alvarez DF et al. Resistance to store depletion-induced endothelial injury in rat lung after chronic heart failure. 2005 Am. J. Respir. Crit. Care Med. pmid:16051904
Dunn LK et al. Chick chorioallantoic membrane as an in vivo model to study vasoreactivity: characterization of development-dependent hyperemia induced by epoxyeicosatrienoic acids (EETs). 2005 Anat Rec A Discov Mol Cell Evol Biol pmid:15952186