14,15-eet

14,15-eet is a lipid of Fatty Acyls (FA) class. 14,15-eet is associated with abnormalities such as Heart failure, Chronic Obstructive Airway Disease, Pneumonia and Fatty Liver. The involved functions are known as chromophore, Stereochemistry, Cell Respiration, cell transformation and oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen. 14,15-eet often locates in Lambda, Cardiovascular system, Blood, Body tissue and Protoplasm. The associated genes with 14,15-eet are CCL2 gene, Cytokine Gene, CYP2C18 gene, CYP2C19 gene and TEK gene. The related lipids are Palmitates.

Cross Reference

Introduction

To understand associated biological information of 14,15-eet, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 14,15-eet?

14,15-eet is suspected in Heart failure, Chronic Obstructive Airway Disease, Pneumonia, Fatty Liver and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 14,15-eet

MeSH term MeSH ID Detail
Hypertension D006973 115 associated lipids
Insulin Resistance D007333 99 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Brain Ischemia D002545 89 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Diabetic Nephropathies D003928 39 associated lipids
Hyperemia D006940 25 associated lipids
Pre-Eclampsia D011225 16 associated lipids
Hypertrophy D006984 16 associated lipids
Lung Injury D055370 14 associated lipids
Per page 10 20 | Total 11

PubChem Associated disorders and diseases

What pathways are associated with 14,15-eet

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 14,15-eet?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 14,15-eet?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 14,15-eet?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 14,15-eet?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 14,15-eet?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 14,15-eet

Download all related citations
Per page 10 20 50 100 | Total 232
Authors Title Published Journal PubMed Link
pmid:24880050
pmid:24607498
pmid:24486707
Amara IE et al. Acute mercury toxicity modulates cytochrome P450, soluble epoxide hydrolase and their associated arachidonic acid metabolites in C57Bl/6 mouse heart. 2014 Toxicol. Lett. pmid:24472606
Diani-Moore S et al. Increases in levels of epoxyeicosatrienoic and dihydroxyeicosatrienoic acids (EETs and DHETs) in liver and heart in vivo by 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) and in hepatic EET:DHET ratios by cotreatment with TCDD and the soluble epoxide hydrolase inhibitor AUDA. 2014 Drug Metab. Dispos. pmid:24311719
Althurwi HN et al. Fenofibrate modulates cytochrome P450 and arachidonic acid metabolism in the heart and protects against isoproterenol-induced cardiac hypertrophy. 2014 J. Cardiovasc. Pharmacol. pmid:24157956
Samokhvalov V et al. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response. 2013 Cell Death Dis pmid:24157879
Yang T et al. The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins. 2013 Lipids Health Dis pmid:24148690
Wang X et al. CYP2J2-derived epoxyeicosatrienoic acids suppress endoplasmic reticulum stress in heart failure. 2014 Mol. Pharmacol. pmid:24145329
Eid S et al. 20-HETE and EETs in diabetic nephropathy: a novel mechanistic pathway. 2013 PLoS ONE pmid:23936373
Karara A et al. Arachidonic acid epoxygenase. Stereochemical analysis of the endogenous epoxyeicosatrienoic acids of human kidney cortex. 1990 FEBS Lett. pmid:2384159
Capdevila JH et al. Cytochrome P-450 enzyme-specific control of the regio- and enantiofacial selectivity of the microsomal arachidonic acid epoxygenase. 1990 J. Biol. Chem. pmid:2358445
Tse MM et al. Cytochrome P450 epoxygenase metabolite, 14,15-EET, protects against isoproterenol-induced cellular hypertrophy in H9c2 rat cell line. 2013 May-Jun Vascul. Pharmacol. pmid:23466634
Podolin PL et al. In vitro and in vivo characterization of a novel soluble epoxide hydrolase inhibitor. 2013 Jul-Aug Prostaglandins Other Lipid Mediat. pmid:23434473
Gross GJ et al. Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. 2013 J. Mol. Cell. Cardiol. pmid:23419451
Tabet Y et al. Relationship between bradykinin-induced relaxation and endogenous epoxyeicosanoid synthesis in human bronchi. 2013 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:23418089
Nelson JW et al. Soluble epoxide hydrolase dimerization is required for hydrolase activity. 2013 J. Biol. Chem. pmid:23362272
Pidkovka N et al. Epoxyeicosatrienoic acids (EETs) regulate epithelial sodium channel activity by extracellular signal-regulated kinase 1/2 (ERK1/2)-mediated phosphorylation. 2013 J. Biol. Chem. pmid:23283969
Chen L et al. Beneficial effects of inhibition of soluble epoxide hydrolase on glucose homeostasis and islet damage in a streptozotocin-induced diabetic mouse model. 2013 Jul-Aug Prostaglandins Other Lipid Mediat. pmid:23247129
Lin WK et al. Effect of 14,15-epoxyeicosatrienoic acid infusion on blood pressure in normal and hypertensive rats. 1990 Biochem. Biophys. Res. Commun. pmid:2322287