14,15-eet

14,15-eet is a lipid of Fatty Acyls (FA) class. 14,15-eet is associated with abnormalities such as Heart failure, Chronic Obstructive Airway Disease, Pneumonia and Fatty Liver. The involved functions are known as chromophore, Stereochemistry, Cell Respiration, cell transformation and oxidoreductase activity, acting on single donors with incorporation of molecular oxygen, incorporation of two atoms of oxygen. 14,15-eet often locates in Lambda, Cardiovascular system, Blood, Body tissue and Protoplasm. The associated genes with 14,15-eet are CCL2 gene, Cytokine Gene, CYP2C18 gene, CYP2C19 gene and TEK gene. The related lipids are Palmitates.

Cross Reference

Introduction

To understand associated biological information of 14,15-eet, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 14,15-eet?

14,15-eet is suspected in Heart failure, Chronic Obstructive Airway Disease, Pneumonia, Fatty Liver and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 14,15-eet

MeSH term MeSH ID Detail
Diabetic Nephropathies D003928 39 associated lipids
Hyperemia D006940 25 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Liver Cirrhosis D008103 67 associated lipids
Brain Ischemia D002545 89 associated lipids
Hypertension D006973 115 associated lipids
Pre-Eclampsia D011225 16 associated lipids
Hypertrophy D006984 16 associated lipids
Insulin Resistance D007333 99 associated lipids
Lung Injury D055370 14 associated lipids
Per page 10 20 | Total 11

PubChem Associated disorders and diseases

What pathways are associated with 14,15-eet

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 14,15-eet?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 14,15-eet?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 14,15-eet?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 14,15-eet?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 14,15-eet?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 14,15-eet

Download all related citations
Per page 10 20 50 100 | Total 232
Authors Title Published Journal PubMed Link
Motoki A et al. Soluble epoxide hydrolase inhibition and gene deletion are protective against myocardial ischemia-reperfusion injury in vivo. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18835921
Terashvili M et al. Antinociception produced by 14,15-epoxyeicosatrienoic acid is mediated by the activation of beta-endorphin and met-enkephalin in the rat ventrolateral periaqueductal gray. 2008 J. Pharmacol. Exp. Ther. pmid:18492947
Smith HE et al. Role of cytochrome P450 2C8 and 2J2 genotypes in calcineurin inhibitor-induced chronic kidney disease. 2008 Pharmacogenet. Genomics pmid:18769365
Snider NT et al. The endocannabinoid anandamide is a substrate for the human polymorphic cytochrome P450 2D6. 2008 J. Pharmacol. Exp. Ther. pmid:18698000
Morin C et al. EET displays anti-inflammatory effects in TNF-alpha stimulated human bronchi: putative role of CPI-17. 2008 Am. J. Respir. Cell Mol. Biol. pmid:17872494
Michaelis UR et al. Role of cytochrome P450 2C epoxygenases in hypoxia-induced cell migration and angiogenesis in retinal endothelial cells. 2008 Invest. Ophthalmol. Vis. Sci. pmid:18326754
Ghosh S et al. Oral delivery of 1,3-dicyclohexylurea nanosuspension enhances exposure and lowers blood pressure in hypertensive rats. 2008 Basic Clin. Pharmacol. Toxicol. pmid:18312493
Gross GJ et al. Effects of the selective EET antagonist, 14,15-EEZE, on cardioprotection produced by exogenous or endogenous EETs in the canine heart. 2008 Am. J. Physiol. Heart Circ. Physiol. pmid:18441205
Cheranov SY et al. An essential role for SRC-activated STAT-3 in 14,15-EET-induced VEGF expression and angiogenesis. 2008 Blood pmid:18408167
Behm DJ et al. Epoxyeicosatrienoic acids function as selective, endogenous antagonists of native thromboxane receptors: identification of a novel mechanism of vasodilation. 2009 J. Pharmacol. Exp. Ther. pmid:18836067
Chen Y et al. 20-125Iodo-14,15-epoxyeicosa-5(Z)-enoic acid: a high-affinity radioligand used to characterize the epoxyeicosatrienoic acid antagonist binding site. 2009 J. Pharmacol. Exp. Ther. pmid:19762546
Falck JR et al. 14,15-Epoxyeicosa-5,8,11-trienoic acid (14,15-EET) surrogates containing epoxide bioisosteres: influence upon vascular relaxation and soluble epoxide hydrolase inhibition. 2009 J. Med. Chem. pmid:19653681
Gross GJ et al. Evidence for a role of opioids in epoxyeicosatrienoic acid-induced cardioprotection in rat hearts. 2010 Am. J. Physiol. Heart Circ. Physiol. pmid:20400686
Merkel MJ et al. Inhibition of soluble epoxide hydrolase preserves cardiomyocytes: role of STAT3 signaling. 2010 Am. J. Physiol. Heart Circ. Physiol. pmid:20008276
Morin C et al. 17,18-epoxyeicosatetraenoic acid targets PPARγ and p38 mitogen-activated protein kinase to mediate its anti-inflammatory effects in the lung: role of soluble epoxide hydrolase. 2010 Am. J. Respir. Cell Mol. Biol. pmid:20008283
Yang C et al. 14,15-Epoxyeicosatrienoic acid induces vasorelaxation through the prostaglandin EP(2) receptors in rat mesenteric artery. 2010 Prostaglandins Other Lipid Mediat. pmid:20601071
Imaizumi S et al. L-4F differentially alters plasma levels of oxidized fatty acids resulting in more anti-inflammatory HDL in mice. 2010 Drug Metab Lett pmid:20642447
Townsley MI et al. Impact of epoxyeicosatrienoic acids in lung ischemia-reperfusion injury. 2010 Microcirculation pmid:20163540
Planagumà A et al. Lovastatin decreases acute mucosal inflammation via 15-epi-lipoxin A4. 2010 Mucosal Immunol pmid:20130564
Lamb DC et al. Streptomyces coelicolor A3(2) CYP102 protein, a novel fatty acid hydroxylase encoded as a heme domain without an N-terminal redox partner. 2010 Appl. Environ. Microbiol. pmid:20097805
Ward NC et al. Cytochrome P450 metabolites of arachidonic acid are elevated in stroke patients compared with healthy controls. 2011 Clin. Sci. pmid:21689071
Pavlov TS et al. Effects of cytochrome P-450 metabolites of arachidonic acid on the epithelial sodium channel (ENaC). 2011 Am. J. Physiol. Renal Physiol. pmid:21697242
Mitra R et al. CYP3A4 mediates growth of estrogen receptor-positive breast cancer cells in part by inducing nuclear translocation of phospho-Stat3 through biosynthesis of (±)-14,15-epoxyeicosatrienoic acid (EET). 2011 J. Biol. Chem. pmid:21402692
Schebb NH et al. Development of an online SPE-LC-MS-based assay using endogenous substrate for investigation of soluble epoxide hydrolase (sEH) inhibitors. 2011 Anal Bioanal Chem pmid:21479549
Chen Y et al. 20-Iodo-14,15-epoxyeicosa-8(Z)-enoyl-3-azidophenylsulfonamide: photoaffinity labeling of a 14,15-epoxyeicosatrienoic acid receptor. 2011 Biochemistry pmid:21469660
Bukhari IA et al. 14,15-Dihydroxy-eicosa-5(Z)-enoic acid selectively inhibits 14,15-epoxyeicosatrienoic acid-induced relaxations in bovine coronary arteries. 2011 J. Pharmacol. Exp. Ther. pmid:20881018
Sridar C et al. Anandamide oxidation by wild-type and polymorphically expressed CYP2B6 and CYP2D6. 2011 Drug Metab. Dispos. pmid:21289075
Kopf PG et al. Angiotensin II regulates adrenal vascular tone through zona glomerulosa cell-derived EETs and DHETs. 2011 Hypertension pmid:21199991
Skepner JE et al. Chronic treatment with epoxyeicosatrienoic acids modulates insulin signaling and prevents insulin resistance in hepatocytes. 2011 Prostaglandins Other Lipid Mediat. pmid:21040800
Shao J et al. P-450-dependent epoxygenase pathway of arachidonic acid is involved in myeloma-induced angiogenesis of endothelial cells. 2011 J. Huazhong Univ. Sci. Technol. Med. Sci. pmid:22038346
Zhu P et al. Development of a semi-automated LC/MS/MS method for the simultaneous quantitation of 14,15-epoxyeicosatrienoic acid, 14,15-dihydroxyeicosatrienoic acid, leukotoxin and leukotoxin diol in human plasma as biomarkers of soluble epoxide hydrolase activity in vivo. 2011 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:21798825
Gauthier KM et al. Soluble epoxide hydrolase contamination of specific catalase preparations inhibits epoxyeicosatrienoic acid vasodilation of rat renal arterioles. 2011 Am. J. Physiol. Renal Physiol. pmid:21753077
Farr H and David T Models of neurovascular coupling via potassium and EET signalling. 2011 J. Theor. Biol. pmid:21781976
Senouvo FY et al. Improved bioavailability of epoxyeicosatrienoic acids reduces TP-receptor agonist-induced tension in human bronchi. 2011 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:21821730
Sarkar P et al. Differential effect of amyloid β on the cytochrome P450 epoxygenase activity in rat brain. 2011 Neuroscience pmid:21843605
Chadderdon SM et al. Activity restriction, impaired capillary function, and the development of insulin resistance in lean primates. 2012 Am. J. Physiol. Endocrinol. Metab. pmid:22739105
Gupta NC et al. Soluble epoxide hydrolase: sex differences and role in endothelial cell survival. 2012 Arterioscler. Thromb. Vasc. Biol. pmid:22723436
Decker M et al. EH3 (ABHD9): the first member of a new epoxide hydrolase family with high activity for fatty acid epoxides. 2012 J. Lipid Res. pmid:22798687
Theken KN et al. Evaluation of cytochrome P450-derived eicosanoids in humans with stable atherosclerotic cardiovascular disease. 2012 Atherosclerosis pmid:22503544
Zhang D et al. Homocysteine upregulates soluble epoxide hydrolase in vascular endothelium in vitro and in vivo. 2012 Circ. Res. pmid:22354938
Terashvili M et al. The protective effect of astrocyte-derived 14,15-epoxyeicosatrienoic acid on hydrogen peroxide-induced cell injury in astrocyte-dopaminergic neuronal cell line co-culture. 2012 Neuroscience pmid:22863680
Wang SB et al. Protection of salvianolic acid A on rat brain from ischemic damage via soluble epoxide hydrolase inhibition. 2012 J Asian Nat Prod Res pmid:23106500
Herse F et al. Cytochrome P450 subfamily 2J polypeptide 2 expression and circulating epoxyeicosatrienoic metabolites in preeclampsia. 2012 Circulation pmid:23155181
Li R et al. Cytochrome P450 2J2 is protective against global cerebral ischemia in transgenic mice. 2012 Prostaglandins Other Lipid Mediat. pmid:23041291
Gross GJ et al. Factors mediating remote preconditioning of trauma in the rat heart: central role of the cytochrome p450 epoxygenase pathway in mediating infarct size reduction. 2013 J. Cardiovasc. Pharmacol. Ther. pmid:22407888
Tabet Y et al. Relationship between bradykinin-induced relaxation and endogenous epoxyeicosanoid synthesis in human bronchi. 2013 Am. J. Physiol. Lung Cell Mol. Physiol. pmid:23418089
Gross GJ et al. Roles of endothelial nitric oxide synthase (eNOS) and mitochondrial permeability transition pore (MPTP) in epoxyeicosatrienoic acid (EET)-induced cardioprotection against infarction in intact rat hearts. 2013 J. Mol. Cell. Cardiol. pmid:23419451
Eid S et al. 20-HETE and EETs in diabetic nephropathy: a novel mechanistic pathway. 2013 PLoS ONE pmid:23936373
Samokhvalov V et al. Epoxyeicosatrienoic acids protect cardiac cells during starvation by modulating an autophagic response. 2013 Cell Death Dis pmid:24157879
Yang T et al. The role of 14,15-dihydroxyeicosatrienoic acid levels in inflammation and its relationship to lipoproteins. 2013 Lipids Health Dis pmid:24148690