Dimethylallyl pyrophosphate

Dimethylallyl pyrophosphate is a lipid of Prenol Lipids (PR) class. Dimethylallyl pyrophosphate is associated with abnormalities such as Consumption-archaic term for TB and Wiskott-Aldrich Syndrome. The involved functions are known as Anabolism, Biochemical Pathway, Oxidation, Process and Chelating Activity [MoA]. Dimethylallyl pyrophosphate often locates in Chloroplasts, Plastids, chloroplast stroma, Cytosol and Cell membrane. The associated genes with Dimethylallyl pyrophosphate are IRF6 wt Allele and ADRBK1 gene. The related lipids are Sterols.

Cross Reference

Introduction

To understand associated biological information of Dimethylallyl pyrophosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Dimethylallyl pyrophosphate?

Dimethylallyl pyrophosphate is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Dimethylallyl pyrophosphate

MeSH term MeSH ID Detail
Melanoma D008545 69 associated lipids
Total 1

PubChem Associated disorders and diseases

What pathways are associated with Dimethylallyl pyrophosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Dimethylallyl pyrophosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Dimethylallyl pyrophosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Dimethylallyl pyrophosphate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Dimethylallyl pyrophosphate

Download all related citations
Per page 10 20 50 100 | Total 520
Authors Title Published Journal PubMed Link
Hunter WN Isoprenoid precursor biosynthesis offers potential targets for drug discovery against diseases caused by apicomplexan parasites. 2011 Curr Top Med Chem pmid:21619509
Hemmi H [Unique flavoenzyme: type 2 isopentenyl diphosphate isomerase]. 2011 Seikagaku pmid:21626882
Atsbaha Zebelo S et al. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. 2011 PLoS ONE pmid:21408066
Odom AR Five questions about non-mevalonate isoprenoid biosynthesis. 2011 PLoS Pathog. pmid:22216001
Wen W and Yu R Artemisinin biosynthesis and its regulatory enzymes: Progress and perspective. 2011 Pharmacogn Rev pmid:22279377
Davey MS et al. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. 2011 PLoS Pathog. pmid:21589907
Baumeister S et al. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. 2011 PLoS ONE pmid:21573242
Gray DW et al. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. 2011 J. Biol. Chem. pmid:21504898
Lemuth K et al. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. 2011 Microb. Cell Fact. pmid:21521516
Zhou K et al. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. 2011 BMC Mol. Biol. pmid:21513543