Dimethylallyl pyrophosphate

Dimethylallyl pyrophosphate is a lipid of Prenol Lipids (PR) class. Dimethylallyl pyrophosphate is associated with abnormalities such as Consumption-archaic term for TB and Wiskott-Aldrich Syndrome. The involved functions are known as Anabolism, Biochemical Pathway, Oxidation, Process and Chelating Activity [MoA]. Dimethylallyl pyrophosphate often locates in Chloroplasts, Plastids, chloroplast stroma, Cytosol and Cell membrane. The associated genes with Dimethylallyl pyrophosphate are IRF6 wt Allele and ADRBK1 gene. The related lipids are Sterols.

Cross Reference

Introduction

To understand associated biological information of Dimethylallyl pyrophosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Dimethylallyl pyrophosphate?

Dimethylallyl pyrophosphate is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Dimethylallyl pyrophosphate

MeSH term MeSH ID Detail
Melanoma D008545 69 associated lipids
Total 1

PubChem Associated disorders and diseases

What pathways are associated with Dimethylallyl pyrophosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Dimethylallyl pyrophosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Dimethylallyl pyrophosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Dimethylallyl pyrophosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Dimethylallyl pyrophosphate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Dimethylallyl pyrophosphate

Download all related citations
Per page 10 20 50 100 | Total 520
Authors Title Published Journal PubMed Link
Brilli F et al. Detection of plant volatiles after leaf wounding and darkening by proton transfer reaction "time-of-flight" mass spectrometry (PTR-TOF). 2011 PLoS ONE pmid:21637822
Luo H et al. Analysis of the transcriptome of Panax notoginseng root uncovers putative triterpene saponin-biosynthetic genes and genetic markers. 2011 BMC Genomics pmid:22369100
Heaps NA and Poulter CD Synthesis and evaluation of chlorinated substrate analogues for farnesyl diphosphate synthase. 2011 J. Org. Chem. pmid:21344952
Atsbaha Zebelo S et al. Chrysolina herbacea modulates terpenoid biosynthesis of Mentha aquatica L. 2011 PLoS ONE pmid:21408066
Thabet I et al. The subcellular localization of periwinkle farnesyl diphosphate synthase provides insight into the role of peroxisome in isoprenoid biosynthesis. 2011 J. Plant Physiol. pmid:21872968
Tsang A et al. Francisella tularensis 2-C-methyl-D-erythritol 4-phosphate cytidylyltransferase: kinetic characterization and phosphoregulation. 2011 PLoS ONE pmid:21694781
Sivy TL et al. Evidence of isoprenoid precursor toxicity in Bacillus subtilis. 2011 Biosci. Biotechnol. Biochem. pmid:22146731
Heaps NA and Poulter CD Type-2 isopentenyl diphosphate isomerase: evidence for a stepwise mechanism. 2011 J. Am. Chem. Soc. pmid:22047048
Zhong YJ et al. Functional characterization of various algal carotenoid ketolases reveals that ketolating zeaxanthin efficiently is essential for high production of astaxanthin in transgenic Arabidopsis. 2011 J. Exp. Bot. pmid:21398427
Misawa N Carotenoid β-ring hydroxylase and ketolase from marine bacteria-promiscuous enzymes for synthesizing functional xanthophylls. 2011 Mar Drugs pmid:21673887
Umeda T et al. Molecular basis of fosmidomycin's action on the human malaria parasite Plasmodium falciparum. 2011 Sci Rep pmid:22355528
Hao da C et al. The first insight into the tissue specific taxus transcriptome via Illumina second generation sequencing. 2011 PLoS ONE pmid:21731678
Tang Q et al. An efficient approach to finding Siraitia grosvenorii triterpene biosynthetic genes by RNA-seq and digital gene expression analysis. 2011 BMC Genomics pmid:21729270
Davey MS et al. Human neutrophil clearance of bacterial pathogens triggers anti-microbial γδ T cell responses in early infection. 2011 PLoS Pathog. pmid:21589907
Okada K The biosynthesis of isoprenoids and the mechanisms regulating it in plants. 2011 Biosci. Biotechnol. Biochem. pmid:21737944
Baumeister S et al. Fosmidomycin uptake into Plasmodium and Babesia-infected erythrocytes is facilitated by parasite-induced new permeability pathways. 2011 PLoS ONE pmid:21573242
Gray DW et al. Biochemical characterization and homology modeling of methylbutenol synthase and implications for understanding hemiterpene synthase evolution in plants. 2011 J. Biol. Chem. pmid:21504898
Meier S et al. A transcriptional analysis of carotenoid, chlorophyll and plastidial isoprenoid biosynthesis genes during development and osmotic stress responses in Arabidopsis thaliana. 2011 BMC Syst Biol pmid:21595952
Lemuth K et al. Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. 2011 Microb. Cell Fact. pmid:21521516
Zhou K et al. Novel reference genes for quantifying transcriptional responses of Escherichia coli to protein overexpression by quantitative PCR. 2011 BMC Mol. Biol. pmid:21513543