2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Glioblastoma D005909 27 associated lipids
Glioma D005910 112 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Hypergammaglobulinemia D006942 9 associated lipids
Insulin Resistance D007333 99 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Liver Cirrhosis, Experimental D008106 36 associated lipids
Lung Neoplasms D008175 171 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Chen CK et al. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. 2008 J. Biol. Inorg. Chem. pmid:18392864
Gibbs JB et al. Selective inhibition of farnesyl-protein transferase blocks ras processing in vivo. 1993 J. Biol. Chem. pmid:8463291
Kisselev O et al. Efficient interaction with a receptor requires a specific type of prenyl group on the G protein gamma subunit. 1995 J. Biol. Chem. pmid:7592699
Fujiyama A et al. S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. 1991 J. Biol. Chem. pmid:1917931
Maltese WA and Erdman RA Characterization of isoprenoid involved in the post-translational modification of mammalian cell proteins. 1989 J. Biol. Chem. pmid:2808372
Gonzalez-Pacanowska D et al. Isopentenoid synthesis in isolated embryonic Drosophila cells. Farnesol catabolism and omega-oxidation. 1988 J. Biol. Chem. pmid:3335546
Bostedor RG et al. Farnesol-derived dicarboxylic acids in the urine of animals treated with zaragozic acid A or with farnesol. 1997 J. Biol. Chem. pmid:9083051
Popják G et al. Biosynthesis and structure of a new intermediate between farnesyl pyrophosphate and squalene. 1969 J. Biol. Chem. pmid:4388617
Carel K et al. Insulin stimulates mitogen-activated protein kinase by a Ras-independent pathway in 3T3-L1 adipocytes. 1996 J. Biol. Chem. pmid:8940037
Anthony ML et al. Inhibition of phosphatidylcholine biosynthesis following induction of apoptosis in HL-60 cells. 1999 J. Biol. Chem. pmid:10391908
Rosado JA and Sage SO Role of the ERK pathway in the activation of store-mediated calcium entry in human platelets. 2001 J. Biol. Chem. pmid:11278479
Wright MM et al. Uncoupling farnesol-induced apoptosis from its inhibition of phosphatidylcholine synthesis. 2001 J. Biol. Chem. pmid:11306571
Daily D et al. Glutaredoxin protects cerebellar granule neurons from dopamine-induced apoptosis by dual activation of the ras-phosphoinositide 3-kinase and jun n-terminal kinase pathways. 2001 J. Biol. Chem. pmid:11290748
Rilling HC A new intermediate in the biosynthesis of squalene. 1966 J. Biol. Chem. pmid:4287912
Tschantz WR et al. Lysosomal prenylcysteine lyase is a FAD-dependent thioether oxidase. 2001 J. Biol. Chem. pmid:11078725
Kisselev OG et al. A farnesylated domain in the G protein gamma subunit is a specific determinant of receptor coupling. 1994 J. Biol. Chem. pmid:8063769
Lübben M and Morand K Novel prenylated hemes as cofactors of cytochrome oxidases. Archaea have modified hemes A and O. 1994 J. Biol. Chem. pmid:8063781
Correll CC et al. Identification of farnesol as the non-sterol derivative of mevalonic acid required for the accelerated degradation of 3-hydroxy-3-methylglutaryl-coenzyme A reductase. 1994 J. Biol. Chem. pmid:8021239
Cox AD et al. The CAAX peptidomimetic compound B581 specifically blocks farnesylated, but not geranylgeranylated or myristylated, oncogenic ras signaling and transformation. 1994 J. Biol. Chem. pmid:8034681
Hartman HL et al. Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium. 2004 J. Biol. Chem. pmid:15131129