2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Neuralgia D009437 28 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Liver Cirrhosis, Experimental D008106 36 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Precancerous Conditions D011230 48 associated lipids
Osteosarcoma D012516 50 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Neuroblastoma D009447 66 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Arteriosclerosis D001161 86 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Insulin Resistance D007333 99 associated lipids
Glioma D005910 112 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Edema D004487 152 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Kuroda M et al. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. 2007 J. Antimicrob. Chemother. pmid:17242033
Nokhodchi A et al. The effect of terpene concentrations on the skin penetration of diclofenac sodium. 2007 Int J Pharm pmid:17174049
Shapira S et al. The tumor suppressor neurofibromin confers sensitivity to apoptosis by Ras-dependent and Ras-independent pathways. 2007 Cell Death Differ. pmid:17096025
Cho T et al. Transcriptional changes in Candida albicans Genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-D-glucosamine medium. 2007 Nihon Ishinkin Gakkai Zasshi pmid:17975531
Henriques M et al. Effect of farnesol on Candida dubliniensis morphogenesis. 2007 Lett. Appl. Microbiol. pmid:17257261
Navarathna DH et al. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. 2007 Infect. Immun. pmid:17283095
Kuroda M et al. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. 2007 FEMS Microbiol. Lett. pmid:17559400
Zundelevich A et al. Suppression of lung cancer tumor growth in a nude mouse model by the Ras inhibitor salirasib (farnesylthiosalicylic acid). 2007 Mol. Cancer Ther. pmid:17541036
Navarathna DH et al. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. 2007 Infect. Immun. pmid:17517874
Uppuluri P et al. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. 2007 Yeast pmid:17583896
Crowell DN et al. Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. 2007 Plant J. pmid:17425716
Blum R et al. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). 2007 Cancer Res. pmid:17409441
Rossignol T et al. Transcriptional response of Candida parapsilosis following exposure to farnesol. 2007 Antimicrob. Agents Chemother. pmid:17684006
Cugini C et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. 2007 Mol. Microbiol. pmid:17640272
Dumitru R et al. In vivo and in vitro anaerobic mating in Candida albicans. 2007 Eukaryotic Cell pmid:17259544
Shintre MS et al. Evaluation of an alcohol-based surgical hand disinfectant containing a synergistic combination of farnesol and benzethonium chloride for immediate and persistent activity against resident hand flora of volunteers and with a novel in vitro pig skin model. 2007 Infect Control Hosp Epidemiol pmid:17265401
Vik A et al. Screening of terpenes and derivatives for antimycobacterial activity; identification of geranylgeraniol and geranylgeranyl acetate as potent inhibitors of Mycobacterium tuberculosis in vitro. 2007 Planta Med. pmid:17924309
Lombardi L et al. Circadian rhythms in Neurospora crassa: clock mutant effects in the absence of a frq-based oscillator. 2007 Genetics pmid:17237512
Cheng AX et al. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. 2007 Phytochemistry pmid:17524436
Wiseman DA et al. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. 2007 J. Pharmacol. Exp. Ther. pmid:17138864
Hasmim M et al. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. 2007 J. Thromb. Haemost. pmid:17059425
Beiner ME et al. Ras antagonist inhibits growth and chemosensitizes human epithelial ovarian cancer cells. 2006 Jan-Feb Int. J. Gynecol. Cancer pmid:16515591
Kubista B et al. Anticancer effects of zoledronic acid against human osteosarcoma cells. 2006 J. Orthop. Res. pmid:16602111
Hogan DA Talking to themselves: autoregulation and quorum sensing in fungi. 2006 Eukaryotic Cell pmid:16607008
Chana RS and Brunskill NJ Thiazolidinediones inhibit albumin uptake by proximal tubular cells through a mechanism independent of peroxisome proliferator activated receptor gamma. 2006 Am. J. Nephrol. pmid:16508249
Hemmerlin A et al. Monitoring farnesol-induced toxicity in tobacco BY-2 cells with a fluorescent analog. 2006 Arch. Biochem. Biophys. pmid:16307722
Santen RJ et al. Farnesylthiosalicylic acid: inhibition of proliferation and enhancement of apoptosis of hormone-dependent breast cancer cells. 2006 Anticancer Drugs pmid:16317288
Rüegg T et al. 3-Farnesyl-2-hydroxybenzoic acid is a new anti-Helicobacter pylori compound from Piper multiplinervium. 2006 J Ethnopharmacol pmid:16266794
Ong TP et al. Farnesol and geraniol chemopreventive activities during the initial phases of hepatocarcinogenesis involve similar actions on cell proliferation and DNA damage, but distinct actions on apoptosis, plasma cholesterol and HMGCoA reductase. 2006 Carcinogenesis pmid:16332721
Rung E et al. Depletion of substrates for protein prenylation increases apoptosis in human periovulatory granulosa cells. 2006 Mol. Reprod. Dev. pmid:16868926
Barkan B et al. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. 2006 Clin. Cancer Res. pmid:17000690
Saidi S et al. In vitro synergistic effect of farnesol and human gingival cells against Candida albicans. 2006 Yeast pmid:16845684
Jabra-Rizk MA et al. Effect of farnesol on Staphylococcus aureus biofilm formation and antimicrobial susceptibility. 2006 Antimicrob. Agents Chemother. pmid:16569866
Khalil AA et al. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke. 2006 Bioorg. Med. Chem. pmid:16458520
Song L A soluble form of phosphatase in Saccharomyces cerevisiae capable of converting farnesyl diphosphate into E,E-farnesol. 2006 Appl. Biochem. Biotechnol. pmid:16484724
Xie J et al. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. 2006 Biomaterials pmid:16490248
Blum R et al. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis. 2006 Mol. Cancer Ther. pmid:16985068
Jones G et al. The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. 2006 FEBS J. pmid:17064257
Wendland J et al. Use of the Porcine Intestinal Epithelium (PIE)-Assay to analyze early stages of colonization by the human fungal pathogen Candida albicans. 2006 J. Basic Microbiol. pmid:17139615
Hamada M et al. Inhibitory activity of 1-farnesylpyridinium on the spatial control over the assembly of cell wall polysaccharides in Schizosaccharomyces pombe. 2006 J. Biochem. pmid:17092950
Duncan RE and Archer MC Farnesol induces thyroid hormone receptor (THR) beta1 but inhibits THR-mediated signaling in MCF-7 human breast cancer cells. 2006 Biochem. Biophys. Res. Commun. pmid:16540091
Semighini CP et al. Farnesol-induced apoptosis in Aspergillus nidulans reveals a possible mechanism for antagonistic interactions between fungi. 2006 Mol. Microbiol. pmid:16420349
Merino SM and Maren S Hitting Ras where it counts: Ras antagonism in the basolateral amygdala inhibits long-term fear memory. 2006 Eur. J. Neurosci. pmid:16420429
Berzat AC et al. Using inhibitors of prenylation to block localization and transforming activity. 2006 Meth. Enzymol. pmid:16757354
Jahangir T et al. Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. 2006 Hum Exp Toxicol pmid:16758765
Erlich S et al. Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. 2006 Biochem. Pharmacol. pmid:16780807
Fuchs BB and Mylonakis E Using non-mammalian hosts to study fungal virulence and host defense. 2006 Curr. Opin. Microbiol. pmid:16814595
Shintre MS et al. Efficacy of an alcohol-based healthcare hand rub containing synergistic combination of farnesol and benzethonium chloride. 2006 Int J Hyg Environ Health pmid:16750419
Nickerson KW et al. Quorum sensing in dimorphic fungi: farnesol and beyond. 2006 Appl. Environ. Microbiol. pmid:16751484
Jensen EC et al. Farnesol restores wild-type colony morphology to 96% of Candida albicans colony morphology variants recovered following treatment with mutagens. 2006 Genome pmid:16699554