2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Precancerous Conditions D011230 48 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Osteosarcoma D012516 50 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
HIV Infections D015658 20 associated lipids
Head Injuries, Closed D016489 5 associated lipids
Anisakiasis D017129 2 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Cordeiro Rde A et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. 2012 Vet. Microbiol. pmid:22580194
Cerca N et al. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. 2012 BMC Res Notes pmid:22591918
Costa CB et al. Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. 2012 Anticancer Res. pmid:22399601
Wang X et al. Waikialoid A suppresses hyphal morphogenesis and inhibits biofilm development in pathogenic Candida albicans. 2012 J. Nat. Prod. pmid:22400916
Goldberg L et al. FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. 2012 Cell Death Dis pmid:22419113
Green SA et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). 2012 J. Exp. Bot. pmid:22162874
Berrocal A et al. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. 2012 J. Appl. Microbiol. pmid:22519968
Falsetta ML et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. 2012 Antimicrob. Agents Chemother. pmid:22985885
Mann FM et al. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. 2011 FEBS Lett. pmid:21237161
Busch S and Unruh T The influence of additives on the nanoscopic dynamics of the phospholipid dimyristoylphosphatidylcholine. 2011 Biochim. Biophys. Acta pmid:21036141
Shareck J and Belhumeur P Modulation of morphogenesis in Candida albicans by various small molecules. 2011 Eukaryotic Cell pmid:21642508
Yang L et al. ZL11n is a novel nitric oxide-releasing derivative of farnesylthiosalicylic acid that induces apoptosis in human hepatoma HepG2 cells via MAPK/mitochondrial pathways. 2011 Biochem. Biophys. Res. Commun. pmid:21621522
Barkan B et al. Phenotypic reversion of invasive neurofibromin-deficient schwannoma by FTS: Ras inhibition reduces BMP4/Erk/Smad signaling. 2011 Mol. Cancer Ther. pmid:21632464
Fitzpatrick AH et al. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. 2011 Plant J. pmid:21395888
Nevo Y et al. The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. 2011 PLoS ONE pmid:21445359
Zhang L et al. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. 2011 PLoS ONE pmid:22174935
Hall RA et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. 2011 Eukaryotic Cell pmid:21666074
Fong C et al. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination. 2011 Langmuir pmid:21294552
Nishimori R et al. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. 2011 Biochemistry pmid:21846125
Riely GJ et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. 2011 J Thorac Oncol pmid:21847063