2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
HIV Infections D015658 20 associated lipids
Dermatitis, Allergic Contact D017449 20 associated lipids
Neurilemmoma D009442 10 associated lipids
Head Injuries, Closed D016489 5 associated lipids
Insulin Resistance D007333 99 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Neuralgia D009437 28 associated lipids
Lung Injury D055370 14 associated lipids
Neoplasms, Glandular and Epithelial D009375 12 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Supuran CT Nanoparticles for controlled release of anti-biofilm agents WO2014130994 (A1): a patent evaluation. 2015 Expert Opin Ther Pat pmid:26028186
Rosales A et al. Synthesis of (±)-aureol by bioinspired rearrangements. 2015 J. Org. Chem. pmid:25591135
Brilhante RS et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. 2015 J. Med. Microbiol. pmid:25657300
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Kostoulias X et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. 2015 Antimicrob. Agents Chemother. pmid:26482299
Hameiri-Grossman M et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. 2015 Oncotarget pmid:26393682
Lopez-Medina E et al. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. 2015 PLoS Pathog. pmid:26313907
Joo JH et al. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. 2015 Biochem. Pharmacol. pmid:26275811
Krause J et al. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. 2015 PLoS ONE pmid:26262843
Strube-Bloss MF et al. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris. 2015 PLoS ONE pmid:26340263