2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Arteriosclerosis D001161 86 associated lipids
Adenocarcinoma D000230 166 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Eglin D et al. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. 2010 J Biomed Mater Res A pmid:19191318
Fujiyama A et al. S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. 1991 J. Biol. Chem. pmid:1917931
Pando R et al. The Ras antagonist farnesylthiosalicylic acid ameliorates experimental myocarditis in the rat. 2010 Mar-Apr Cardiovasc. Pathol. pmid:19144546
Ohto C et al. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. 2009 Biosci. Biotechnol. Biochem. pmid:19129660
Décanis N et al. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. 2009 Cytokine pmid:19121950
Togashi N et al. Effects of two terpene alcohols on the antibacterial activity and the mode of action of farnesol against Staphylococcus aureus. 2008 Molecules pmid:19078849
Goldberg L et al. New derivatives of farnesylthiosalicylic acid (salirasib) for cancer treatment: farnesylthiosalicylamide inhibits tumor growth in nude mice models. 2009 J. Med. Chem. pmid:19072665
Cho T and Aoyama T [Quorum sensing in fungal pathogenesis]. 2008 Nippon Rinsho pmid:19069092
Cho T et al. [Farnesol as a quorum-sensing molecule in Candida albicans]. 2008 Nihon Ishinkin Gakkai Zasshi pmid:19001754
Goldberg L et al. Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats. 2008 Mol. Cancer Ther. pmid:19001442
Muramatsu M et al. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols. 2008 J. Biosci. Bioeng. pmid:18930003
de Montellano PR et al. Inhibition of squalene synthetase by farnesyl pyrophosphate analogues. 1977 J. Med. Chem. pmid:189031
Cushion MT et al. Biofilm formation by Pneumocystis spp. 2009 Eukaryotic Cell pmid:18820078
Peleg AY et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18794525
Qamar W and Sultana S Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. 2008 Chem. Biol. Interact. pmid:18793622
Scheper MA et al. Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. 2008 Neoplasia pmid:18714396
Koo H Strategies to enhance the biological effects of fluoride on dental biofilms. 2008 Adv. Dent. Res. pmid:18694872
Kotti T et al. Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18685105
Savoldi M et al. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. 2008 Mol. Microbiol. pmid:18681941
Hisajima T et al. Protective effects of farnesol against oral candidiasis in mice. 2008 Microbiol. Immunol. pmid:18667031
Lapczynski A et al. Fragrance material review on farnesol. 2008 Food Chem. Toxicol. pmid:18640198
Muramatsu M et al. Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms. 2008 Appl. Microbiol. Biotechnol. pmid:18636253
Jahangir T and Sultana S Benzo(a)pyrene-induced genotoxicity: attenuation by farnesol in a mouse model. 2008 J Enzyme Inhib Med Chem pmid:18618320
Geraldo IM et al. Rapid antibacterial activity of 2 novel hand soaps: evaluation of the risk of development of bacterial resistance to the antibacterial agents. 2008 Infect Control Hosp Epidemiol pmid:18616390
Au-Yeung KK et al. Herbal isoprenols induce apoptosis in human colon cancer cells through transcriptional activation of PPARgamma. 2008 Cancer Invest. pmid:18608213
Schleimer K et al. Competition between native liver and graft in auxiliary liver transplantation in a rat model. 2008 Transplant. Proc. pmid:18555091
Zhao M et al. Determination of salirasib (S-trans,trans-farnesylthiosalicylic acid) in human plasma using liquid chromatography-tandem mass spectrometry. 2008 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:18534927
Duncan RE and Archer MC Farnesol decreases serum triglycerides in rats: identification of mechanisms including up-regulation of PPARalpha and down-regulation of fatty acid synthase in hepatocytes. 2008 Lipids pmid:18509688
Mor A et al. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells. 2008 Eur. J. Immunol. pmid:18461565
McAlester G et al. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. 2008 J. Med. Microbiol. pmid:18436588
Kebaara BW et al. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. 2008 Eukaryotic Cell pmid:18424510
Joo JH and Jetten AM NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. 2008 J. Biol. Chem. pmid:18424438
Gallagher BM and Hartig WJ Hormonal studies of uridine utilization in an insect cell line CP-1268 derived from the codling moth Laspeyresia pomonella. 1976 In Vitro pmid:184032
Chen CK et al. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. 2008 J. Biol. Inorg. Chem. pmid:18392864
Marcuzzi A et al. Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. 2008 Pediatr. Res. pmid:18391837
Lorek J et al. Influence of farnesol on the morphogenesis of Aspergillus niger. 2008 J. Basic Microbiol. pmid:18383232
Rotblat B et al. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. 2008 Meth. Enzymol. pmid:18374183
Shimomura K et al. Homofarnesals: female sex attractant pheromone components of the southern cowpea weevil, Callosobruchus chinensis. 2008 J. Chem. Ecol. pmid:18351422
Weber K et al. Secretion of E,E-farnesol and biofilm formation in eight different Candida species. 2008 Antimicrob. Agents Chemother. pmid:18332168
Tsangarakis C et al. Zeolite NaY-promoted cyclization of farnesal: a short route to nanaimoal. 2008 J. Org. Chem. pmid:18321121
Teshima K and Kondo T Analytical method for determination of allylic isoprenols in rat tissues by liquid chromatography/tandem mass spectrometry following chemical derivatization with 3-nitrophtalic anhydride. 2008 J Pharm Biomed Anal pmid:18313250
Blum R et al. Inhibitors of chronically active ras: potential for treatment of human malignancies. 2008 Recent Pat Anticancer Drug Discov pmid:18289122
Semighini CP et al. Inhibition of Fusarium graminearum growth and development by farnesol. 2008 FEMS Microbiol. Lett. pmid:18201191
Golczak M et al. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. 2008 J. Biol. Chem. pmid:18195010
Maher M et al. Activation of TRPA1 by farnesyl thiosalicylic acid. 2008 Mol. Pharmacol. pmid:18171730
Davis-Hanna A et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. 2008 Mol. Microbiol. pmid:18078440
Shchepin R et al. Influence of heterocyclic and oxime-containing farnesol analogs on quorum sensing and pathogenicity in Candida albicans. 2008 Bioorg. Med. Chem. pmid:18037299
Abbasnezhad H et al. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. 2008 Colloids Surf B Biointerfaces pmid:17997081
Cho T et al. Transcriptional changes in Candida albicans Genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-D-glucosamine medium. 2007 Nihon Ishinkin Gakkai Zasshi pmid:17975531
Zvibel I et al. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. 2008 Dig. Dis. Sci. pmid:17934818
Vik A et al. Screening of terpenes and derivatives for antimycobacterial activity; identification of geranylgeraniol and geranylgeranyl acetate as potent inhibitors of Mycobacterium tuberculosis in vitro. 2007 Planta Med. pmid:17924309
Haklai R et al. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. 2008 Cancer Chemother. Pharmacol. pmid:17909812
Dionigi CP et al. Effects of farnesol and the off-flavor derivative geosmin on Streptomyces tendae. 1991 Appl. Environ. Microbiol. pmid:1785920
Marciano D et al. Neuroprotective effects of the Ras inhibitor S-trans-trans-farnesylthiosalicylic acid, measured by diffusion-weighted imaging after traumatic brain injury in rats. 2007 J. Neurotrauma pmid:17711399
Lee H et al. Characterization of (E,E)-farnesol and its fatty acid esters from anal scent glands of nutria (Myocastor coypus) by gas chromatography-mass spectrometry and gas chromatography-infrared spectrometry. 2007 J Chromatogr A pmid:17709112
Joo JH et al. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. 2007 Cancer Res. pmid:17699800
Zhang L and Hill RP Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. 2007 Cancer Res. pmid:17699784
Rossignol T et al. Transcriptional response of Candida parapsilosis following exposure to farnesol. 2007 Antimicrob. Agents Chemother. pmid:17684006
da Silva Morais A et al. Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes in vitro and in vivo in rats. 2008 Clin. Sci. pmid:17678500
Cugini C et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. 2007 Mol. Microbiol. pmid:17640272
Yue W et al. Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells. 2007 Aug-Sep J. Steroid Biochem. Mol. Biol. pmid:17616457
Uppuluri P et al. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. 2007 Yeast pmid:17583896
Kuroda M et al. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. 2007 FEMS Microbiol. Lett. pmid:17559400
Zundelevich A et al. Suppression of lung cancer tumor growth in a nude mouse model by the Ras inhibitor salirasib (farnesylthiosalicylic acid). 2007 Mol. Cancer Ther. pmid:17541036
Cheng AX et al. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. 2007 Phytochemistry pmid:17524436
Navarathna DH et al. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. 2007 Infect. Immun. pmid:17517874
Bellahcène A et al. Zoledronate inhibits alphavbeta3 and alphavbeta5 integrin cell surface expression in endothelial cells. 2007 Mar-Apr Endothelium pmid:17497369
Woodard B et al. 3D-QSAR of fungal quorum-sensing inhibiting analogs of farnesol. 2007 Mar-Apr J Environ Sci Health B pmid:17454380
Crowell DN et al. Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. 2007 Plant J. pmid:17425716
Blum R et al. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). 2007 Cancer Res. pmid:17409441
Touhara K and Prestwich GD Binding site mapping of a photoaffinity-labeled juvenile hormone binding protein. 1992 Biochem. Biophys. Res. Commun. pmid:1734862
Journe F et al. Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farnesoid-X-receptor-mediated estrogen receptor activation. 2008 Breast Cancer Res. Treat. pmid:17333335
Navarathna DH et al. Effect of farnesol on a mouse model of systemic candidiasis, determined by use of a DPP3 knockout mutant of Candida albicans. 2007 Infect. Immun. pmid:17283095
Shintre MS et al. Evaluation of an alcohol-based surgical hand disinfectant containing a synergistic combination of farnesol and benzethonium chloride for immediate and persistent activity against resident hand flora of volunteers and with a novel in vitro pig skin model. 2007 Infect Control Hosp Epidemiol pmid:17265401
Dumitru R et al. In vivo and in vitro anaerobic mating in Candida albicans. 2007 Eukaryotic Cell pmid:17259544
Henriques M et al. Effect of farnesol on Candida dubliniensis morphogenesis. 2007 Lett. Appl. Microbiol. pmid:17257261
Kuroda M et al. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. 2007 J. Antimicrob. Chemother. pmid:17242033
Lombardi L et al. Circadian rhythms in Neurospora crassa: clock mutant effects in the absence of a frq-based oscillator. 2007 Genetics pmid:17237512
L'Helias C [Juvenile hormone in diapausing Pieris brassicae and mutations. Tetrahydrofolic acid and pterins incubated in chrysalids, provoking ontogenic and mutagenic genetic information alterations in Drosophila melanogaster]. 1975 Mar-Apr Ann. Endocrinol. (Paris) pmid:172004
Nokhodchi A et al. The effect of terpene concentrations on the skin penetration of diclofenac sodium. 2007 Int J Pharm pmid:17174049
Fairn GD et al. A chemogenomic screen in Saccharomyces cerevisiae uncovers a primary role for the mitochondria in farnesol toxicity and its regulation by the Pkc1 pathway. 2007 J. Biol. Chem. pmid:17164236
Wendland J et al. Use of the Porcine Intestinal Epithelium (PIE)-Assay to analyze early stages of colonization by the human fungal pathogen Candida albicans. 2006 J. Basic Microbiol. pmid:17139615
Wiseman DA et al. Cell cycle arrest by the isoprenoids perillyl alcohol, geraniol, and farnesol is mediated by p21(Cip1) and p27(Kip1) in human pancreatic adenocarcinoma cells. 2007 J. Pharmacol. Exp. Ther. pmid:17138864
Cetin A et al. Angiotensin II-induced MAPK phosphorylation mediated by Ras and/or phospholipase C-dependent phosphorylations but not by protein kinase C phosphorylation in cultured rat vascular smooth muscle cells. 2007 Pharmacology pmid:17135774
Shapira S et al. The tumor suppressor neurofibromin confers sensitivity to apoptosis by Ras-dependent and Ras-independent pathways. 2007 Cell Death Differ. pmid:17096025
Hamada M et al. Inhibitory activity of 1-farnesylpyridinium on the spatial control over the assembly of cell wall polysaccharides in Schizosaccharomyces pombe. 2006 J. Biochem. pmid:17092950
Jones G et al. The retinoid-X receptor ortholog, ultraspiracle, binds with nanomolar affinity to an endogenous morphogenetic ligand. 2006 FEBS J. pmid:17064257
Hasmim M et al. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. 2007 J. Thromb. Haemost. pmid:17059425
Jabra-Rizk MA et al. Effect of farnesol on Candida dubliniensis biofilm formation and fluconazole resistance. 2006 FEMS Yeast Res. pmid:17042756
Binda C et al. Structure of the human mitochondrial monoamine oxidase B: new chemical implications for neuroprotectant drug design. 2006 Neurology pmid:17030739
Barkan B et al. The Ras inhibitor farnesylthiosalicylic acid as a potential therapy for neurofibromatosis type 1. 2006 Clin. Cancer Res. pmid:17000690
Blum R et al. Suppression of survivin expression in glioblastoma cells by the Ras inhibitor farnesylthiosalicylic acid promotes caspase-dependent apoptosis. 2006 Mol. Cancer Ther. pmid:16985068
Alem MA et al. Production of tyrosol by Candida albicans biofilms and its role in quorum sensing and biofilm development. 2006 Eukaryotic Cell pmid:16980403
Rung E et al. Depletion of substrates for protein prenylation increases apoptosis in human periovulatory granulosa cells. 2006 Mol. Reprod. Dev. pmid:16868926
Saidi S et al. In vitro synergistic effect of farnesol and human gingival cells against Candida albicans. 2006 Yeast pmid:16845684
Fuchs BB and Mylonakis E Using non-mammalian hosts to study fungal virulence and host defense. 2006 Curr. Opin. Microbiol. pmid:16814595
Erlich S et al. Ras inhibition results in growth arrest and death of androgen-dependent and androgen-independent prostate cancer cells. 2006 Biochem. Pharmacol. pmid:16780807
Green TR et al. Compartmentation of isopentenyl pyophosphate isomerase and prenyl transferase in developing castor bean endosperm. 1975 Biochem. Biophys. Res. Commun. pmid:167761
Jahangir T et al. Farnesol prevents Fe-NTA-mediated renal oxidative stress and early tumour promotion markers in rats. 2006 Hum Exp Toxicol pmid:16758765
Berzat AC et al. Using inhibitors of prenylation to block localization and transforming activity. 2006 Meth. Enzymol. pmid:16757354