2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Glioma D005910 112 associated lipids
Insulin Resistance D007333 99 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Ivanov SS et al. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. 2010 J. Biol. Chem. pmid:20813839
Levy R et al. Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas. 2010 Mol. Cancer Ther. pmid:20682656
Gilpin S and Maibach H Allergic contact dermatitis caused by farnesol: clinical relevance. 2010 Cutan Ocul Toxicol pmid:20858058
Charette N et al. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. 2010 Mol. Cancer pmid:20860815
Wang C et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. 2010 Biotechnol. Bioeng. pmid:20552672
Aizman E et al. The combined treatment of Copaxone and Salirasib attenuates experimental autoimmune encephalomyelitis (EAE) in mice. 2010 J. Neuroimmunol. pmid:20869125
Kubesová A et al. Separation of attogram terpenes by the capillary zone electrophoresis with fluorometric detection. 2010 J Chromatogr A pmid:20933239
Bhagatji P et al. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. 2010 Biophys. J. pmid:21081081
Bhandari J et al. Identification of a novel abscisic acid-regulated farnesol dehydrogenase from Arabidopsis. 2010 Plant Physiol. pmid:20807998
Jin J et al. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. 2010 Molecules pmid:21042264
Eglin D et al. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. 2010 J Biomed Mater Res A pmid:19191318
Joo JH and Jetten AM Molecular mechanisms involved in farnesol-induced apoptosis. 2010 Cancer Lett. pmid:19520495
Lee SJ and Moon HI Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L. 2010 Immunopharmacol Immunotoxicol pmid:20175741
Hanker AB et al. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. 2010 Oncogene pmid:19838215
Langford ML et al. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. 2010 Antimicrob. Agents Chemother. pmid:19933803
Deveau A et al. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. 2010 Eukaryotic Cell pmid:20118211
Moya M et al. Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. 2010 Chem. Biol. Interact. pmid:20079722
Endo S et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. 2010 Bioorg. Med. Chem. pmid:20304656
Pando R et al. The Ras antagonist farnesylthiosalicylic acid ameliorates experimental myocarditis in the rat. 2010 Mar-Apr Cardiovasc. Pathol. pmid:19144546
Liu P et al. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. 2010 Mar-Apr Mycologia pmid:20361499
Deveau A and Hogan DA Linking quorum sensing regulation and biofilm formation by Candida albicans. 2011 Methods Mol. Biol. pmid:21031315
Mann FM et al. Rv0989c encodes a novel (E)-geranyl diphosphate synthase facilitating decaprenyl diphosphate biosynthesis in Mycobacterium tuberculosis. 2011 FEBS Lett. pmid:21237161
de Castro Pimentel Figueiredo B et al. The Aspergillus nidulans nucA(EndoG) homologue is not involved in cell death. 2011 Eukaryotic Cell pmid:21131437
Gomes F et al. Farnesol as antibiotics adjuvant in Staphylococcus epidermidis control in vitro. 2011 Am. J. Med. Sci. pmid:21107231
Busch S and Unruh T The influence of additives on the nanoscopic dynamics of the phospholipid dimyristoylphosphatidylcholine. 2011 Biochim. Biophys. Acta pmid:21036141
Shareck J and Belhumeur P Modulation of morphogenesis in Candida albicans by various small molecules. 2011 Eukaryotic Cell pmid:21642508
Yang L et al. ZL11n is a novel nitric oxide-releasing derivative of farnesylthiosalicylic acid that induces apoptosis in human hepatoma HepG2 cells via MAPK/mitochondrial pathways. 2011 Biochem. Biophys. Res. Commun. pmid:21621522
Barkan B et al. Phenotypic reversion of invasive neurofibromin-deficient schwannoma by FTS: Ras inhibition reduces BMP4/Erk/Smad signaling. 2011 Mol. Cancer Ther. pmid:21632464
Yoo S et al. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. 2011 Caries Res. pmid:21720161
Fitzpatrick AH et al. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. 2011 Plant J. pmid:21395888
Nevo Y et al. The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. 2011 PLoS ONE pmid:21445359
Khan R and Sultana S Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. 2011 Chem. Biol. Interact. pmid:21453689
Gonçalves O et al. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. 2011 Mutat. Res. pmid:21453784
Ling Y et al. Novel nitric oxide-releasing derivatives of farnesylthiosalicylic acid: synthesis and evaluation of antihepatocellular carcinoma activity. 2011 J. Med. Chem. pmid:21504204
Hogan DA and Muhlschlegel FA Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. 2011 Curr. Opin. Microbiol. pmid:22014725
Bai C et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. 2011 Mol. Microbiol. pmid:21992526
Zhang L et al. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. 2011 PLoS ONE pmid:22174935
Hall RA et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. 2011 Eukaryotic Cell pmid:21666074
Biran A et al. Downregulation of survivin and aurora A by histone deacetylase and RAS inhibitors: a new drug combination for cancer therapy. 2011 Int. J. Cancer pmid:20473860
Fong C et al. Monodisperse nonionic isoprenoid-type hexahydrofarnesyl ethylene oxide surfactants: high throughput lyotropic liquid crystalline phase determination. 2011 Langmuir pmid:21294552
Kraitzer A et al. Composite fiber structures with antiproliferative agents exhibit advantageous drug delivery and cell growth inhibition in vitro. 2011 J Pharm Sci pmid:20623695
Goto T et al. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21862726
Fitzpatrick AH et al. Roles for farnesol and ABA in Arabidopsis flower development. 2011 Plant Signal Behav pmid:21758018
Mor A et al. Ras inhibition induces insulin sensitivity and glucose uptake. 2011 PLoS ONE pmid:21738773
Sharma M and Prasad R The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. 2011 Antimicrob. Agents Chemother. pmid:21768514
Nishimori R et al. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. 2011 Biochemistry pmid:21846125
Riely GJ et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. 2011 J Thorac Oncol pmid:21847063
Ganguly S et al. Zap1 control of cell-cell signaling in Candida albicans biofilms. 2011 Eukaryotic Cell pmid:21890817
Dinamarco TM et al. Farnesol-induced cell death in the filamentous fungus Aspergillus nidulans. 2011 Biochem. Soc. Trans. pmid:21936849
Mor A et al. Inhibition of contact sensitivity by farnesylthiosalicylic acid-amide, a potential Rap1 inhibitor. 2011 J. Invest. Dermatol. pmid:21716322