2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Arteriosclerosis D001161 86 associated lipids
Body Weight D001835 333 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Dermatomycoses D003881 17 associated lipids
Edema D004487 152 associated lipids
Encephalomyelitis, Autoimmune, Experimental D004681 26 associated lipids
Fibrosis D005355 23 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Alves FR et al. Biofilm biomass disruption by natural substances with potential for endodontic use. 2013 Jan-Feb Braz Oral Res pmid:23306623
Alves FR et al. Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. 2013 Braz Dent J pmid:23969910
Downie MM et al. Peroxisome proliferator-activated receptor and farnesoid X receptor ligands differentially regulate sebaceous differentiation in human sebaceous gland organ cultures in vitro. 2004 Br. J. Dermatol. pmid:15491415
Langman MJ et al. Treatment of chronic gastric ulcer with carbenoxolone and gefarnate: a comparative trial. 1973 Br Med J pmid:4577839
Newman CR and Montgomery DA A double-blind trial of oral gefarnate in duodenal ulcer. 1973 Br J Clin Pract pmid:4580209
Coppi G et al. [Cicatricial action of trifarnesylacetate of pantothenile (DA 1813) on normal wounds and on whounds aggravated by corticoid treatment in rats]. 1969 Boll. Soc. Ital. Biol. Sper. pmid:5346779
Coppi G et al. [The antifungal properties of homofarnesoyl-hydroxamic acid (DA 2209)]. 1969 Boll Chim Farm pmid:5354276
Gadolini A and Facchielli G [Gas-chromatographic behavior of gefarnate]. 1971 Boll Chim Farm pmid:5147982
Cerca N et al. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. 2012 BMC Res Notes pmid:22591918
Jeon JG et al. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms. 2009 BMC Microbiol. pmid:19863808
Rocha GR et al. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. 2018 BMC Complement Altern Med pmid:29444673
Krasowski MD et al. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. 2011 BMC Biochem. pmid:21291553
Nasr N et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. 2012 Blood pmid:22677126
Song L Recovery of E,E-farnesol from cultures of yeast erg9 mutants: extraction with polymeric beads and purification by normal-phase chromatography. 2009 Jul-Aug Biotechnol. Prog. pmid:19569196
Wang C et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. 2010 Biotechnol. Bioeng. pmid:20552672
Ohto C et al. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. 2009 Biosci. Biotechnol. Biochem. pmid:19129660
Nagai H et al. Development of a novel PPARγ ligand screening system using pinpoint fluorescence-probed protein. 2011 Biosci. Biotechnol. Biochem. pmid:21307572
Nunes PM et al. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica. 2013 Bioprocess Biosyst Eng pmid:23715764
Rahman NK et al. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. 2011 Bioprocess Biosyst Eng pmid:21327986
Bhagatji P et al. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. 2010 Biophys. J. pmid:21081081
Beedle AM and Zamponi GW Block of voltage-dependent calcium channels by aliphatic monoamines. 2000 Biophys. J. pmid:10866952
Kim S et al. Evaluation of morphogenic regulatory activity of farnesoic acid and its derivatives against Candida albicans dimorphism. 2002 Bioorg. Med. Chem. Lett. pmid:11958988
Tsuji F et al. The geranyl-modified tryptophan residue is crucial for ComXRO-E-2 pheromone biological activity. 2011 Bioorg. Med. Chem. Lett. pmid:21636272
Ling Y et al. Synthesis and evaluation of nitric oxide-releasing derivatives of farnesylthiosalicylic acid as anti-tumor agents. 2010 Bioorg. Med. Chem. pmid:20435479
Ling Y et al. Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. 2014 Bioorg. Med. Chem. pmid:24300920
Shchepin R et al. Influence of heterocyclic and oxime-containing farnesol analogs on quorum sensing and pathogenicity in Candida albicans. 2008 Bioorg. Med. Chem. pmid:18037299
Endo S et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. 2010 Bioorg. Med. Chem. pmid:20304656
Khalil AA et al. Isolation and characterization of a monoamine oxidase B selective inhibitor from tobacco smoke. 2006 Bioorg. Med. Chem. pmid:16458520
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Bhattacharyya S et al. Sol-gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus. 2014 Biomaterials pmid:24099711
Xie J et al. Microparticles developed by electrohydrodynamic atomization for the local delivery of anticancer drug to treat C6 glioma in vitro. 2006 Biomaterials pmid:16490248
Wright MM and McMaster CR Phospholipid synthesis, diacylglycerol compartmentation, and apoptosis. 2002 Biol. Res. pmid:12415740
Inoue Y et al. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane. 2016 Biol. Pharm. Bull. pmid:27150138
Sato T et al. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. 2004 Biol. Pharm. Bull. pmid:15133261
Xia J et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. 2017 Biofouling pmid:28317391
Zhang X et al. PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel. 2013 Bioconjug. Chem. pmid:23425093
Zhang X et al. Reduction-sensitive dual functional nanomicelles for improved delivery of paclitaxel. 2014 Bioconjug. Chem. pmid:25121577
Bifulco M et al. Inhibition of farnesylation blocks growth but not differentiation in FRTL-5 thyroid cells. 1999 Biochimie pmid:10401660
Samuel O et al. Preparation of (1-3H) polyprenyl pyrophosphates. 1974 Biochimie pmid:4375498
Koyama T et al. Substrate specificity of squalene synthetase. 1980 Biochim. Biophys. Acta pmid:7357018
Aharonson Z et al. Stringent structural requirements for anti-Ras activity of S-prenyl analogues. 1998 Biochim. Biophys. Acta pmid:9545527
Rowat AC and Davis JH Farnesol-DMPC phase behaviour: a (2)H-NMR study. 2004 Biochim. Biophys. Acta pmid:15003880
Shechter I Biosynthesis of trans-farnesyl triphosphate in Gibberella fujikuroi. 1973 Biochim. Biophys. Acta pmid:4795388
Hecht SM Mass spectrometric identification of some prenylaminopurines. 1970 Biochim. Biophys. Acta pmid:5507911
Shechter I Phosphate transfer from trans-farnesyl triphosphate to AMP in Gibberella fujikuroi. 1974 Biochim. Biophys. Acta pmid:4423368
Bertolino A et al. Polyisoprenoid amphiphilic compounds as inhibitors of squalene synthesis and other microsomal enzymes. 1978 Biochim. Biophys. Acta pmid:210830
Rowat AC et al. Effects of farnesol on the physical properties of DMPC membranes. 2005 Biochim. Biophys. Acta pmid:15963943
Haug JS et al. Directed cell killing (apoptosis) in human lymphoblastoid cells incubated in the presence of farnesol: effect of phosphatidylcholine. 1994 Biochim. Biophys. Acta pmid:8061045
DeBarber AE et al. Omega-hydroxylation of farnesol by mammalian cytochromes p450. 2004 Biochim. Biophys. Acta pmid:15158752
Umetani N et al. Lovastatin inhibits gene expression of type-I scavenger receptor in THP-1 human macrophages. 1996 Biochim. Biophys. Acta pmid:8908154