2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Rocha GR et al. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. 2018 BMC Complement Altern Med pmid:29444673
Saito K et al. An in vitro skin sensitization assay termed EpiSensA for broad sets of chemicals including lipophilic chemicals and pre/pro-haptens. 2017 Toxicol In Vitro pmid:27965148
Xia J et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. 2017 Biofouling pmid:28317391
Cagliero C et al. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. 2017 J Chromatogr A pmid:28343686
Špičáková A et al. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions. 2017 Molecules pmid:28338641
Wu L et al. Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives. 2017 PLoS ONE pmid:28182780
Schmukler E et al. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. 2017 PLoS ONE pmid:28151959
Zhu J et al. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. 2016 PLoS ONE pmid:26959814
Torabi S and Mo H Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation. 2016 Exp. Biol. Med. (Maywood) pmid:26660152
Zhao Y et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. 2016 Eur. J. Cancer pmid:27710830
Lemaire B et al. Cytochrome P450 20A1 in zebrafish: Cloning, regulation and potential involvement in hyperactivity disorders. 2016 Toxicol. Appl. Pharmacol. pmid:26853319
Sun J et al. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. 2016 Acta Biomater pmid:27422196
Bandara HM et al. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. 2016 Mol. Pharm. pmid:27383205
Inoue Y et al. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane. 2016 Biol. Pharm. Bull. pmid:27150138
Léger T et al. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. 2016 Mol. Cell Proteomics pmid:27125826
Cheng HL et al. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. 2016 Oncotarget pmid:26848867
Jung SI et al. Comparison of E,E-Farnesol Secretion and the Clinical Characteristics of Candida albicans Bloodstream Isolates from Different Multilocus Sequence Typing Clades. 2016 PLoS ONE pmid:26848577
Seman-Kamarulzaman AF et al. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. 2016 PLoS ONE pmid:27560927
Supuran CT Nanoparticles for controlled release of anti-biofilm agents WO2014130994 (A1): a patent evaluation. 2015 Expert Opin Ther Pat pmid:26028186
Rosales A et al. Synthesis of (±)-aureol by bioinspired rearrangements. 2015 J. Org. Chem. pmid:25591135
Brilhante RS et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. 2015 J. Med. Microbiol. pmid:25657300
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Kostoulias X et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. 2015 Antimicrob. Agents Chemother. pmid:26482299
Hameiri-Grossman M et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. 2015 Oncotarget pmid:26393682
Lopez-Medina E et al. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. 2015 PLoS Pathog. pmid:26313907
Joo JH et al. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. 2015 Biochem. Pharmacol. pmid:26275811
Krause J et al. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. 2015 PLoS ONE pmid:26262843
Mogen AB et al. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms. 2015 PLoS ONE pmid:26222384
Hargarten JC et al. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration. 2015 Infect. Immun. pmid:26195556
Stoddart CA et al. Oral administration of the nucleoside EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. 2015 Antimicrob. Agents Chemother. pmid:25941222
de Salas F et al. Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase. 2015 Appl. Environ. Microbiol. pmid:25888179
Badar T et al. Phase I study of S-trans, trans-farnesylthiosalicylic acid (salirasib), a novel oral RAS inhibitor in patients with refractory hematologic malignancies. 2015 Clin Lymphoma Myeloma Leuk pmid:25795639
Zhang W et al. Vaginal Microbicide Film Combinations of Two Reverse Transcriptase Inhibitors, EFdA and CSIC, for the Prevention of HIV-1 Sexual Transmission. 2015 Pharm. Res. pmid:25794967
Leonhardt I et al. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. 2015 MBio pmid:25784697
Horev B et al. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. 2015 ACS Nano pmid:25661192
De Loof A The essence of female-male physiological dimorphism: differential Ca2+-homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroids? The Calcigender paradigm. 2015 Gen. Comp. Endocrinol. pmid:25540913
Léger T et al. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. 2015 Mol. Cell Proteomics pmid:25348831
Katragkou A et al. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. 2015 J. Antimicrob. Chemother. pmid:25288679
Strube-Bloss MF et al. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris. 2015 PLoS ONE pmid:26340263
Scheman A et al. European Directive fragrances in natural products. 2014 Mar-Apr Dermatitis pmid:24603515
Aizman E et al. Therapeutic effect of farnesylthiosalicylic acid on adjuvant-induced arthritis through suppressed release of inflammatory cytokines. 2014 Clin. Exp. Immunol. pmid:24215151
Neeman R et al. Vitamin D and S-farnesylthiosalicylic acid have a synergistic effect on hepatic stellate cells proliferation. 2014 Dig. Dis. Sci. pmid:24942325
Zhang X et al. Nanomicellar carriers for targeted delivery of anticancer agents. 2014 Ther Deliv pmid:24341817
Ling Y et al. Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. 2014 Bioorg. Med. Chem. pmid:24300920
Makovski V et al. Analysis of gene expression array in TSC2-deficient AML cells reveals IRF7 as a pivotal factor in the Rheb/mTOR pathway. 2014 Cell Death Dis pmid:25476905
Okamoto S et al. Zoledronic acid induces apoptosis and S-phase arrest in mesothelioma through inhibiting Rab family proteins and topoisomerase II actions. 2014 Cell Death Dis pmid:25393473
Goldshmit Y et al. Interfering with the interaction between ErbB1, nucleolin and Ras as a potential treatment for glioblastoma. 2014 Oncotarget pmid:25261371
Zhang X et al. Reduction-sensitive dual functional nanomicelles for improved delivery of paclitaxel. 2014 Bioconjug. Chem. pmid:25121577
Zhang X et al. PEG-farnesyl thiosalicylic acid telodendrimer micelles as an improved formulation for targeted delivery of paclitaxel. 2014 Mol. Pharm. pmid:24987803
Ilayaraja R et al. Evaluating the binding efficiency of pheromone binding protein with its natural ligand using molecular docking and fluorescence analysis. 2014 Sci Rep pmid:24903953