2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Chen M et al. Use of synthetic isoprenoids to target protein prenylation and Rho GTPases in breast cancer invasion. 2014 PLoS ONE pmid:24587105
Ha J et al. Determination of E,E-farnesol in Makgeolli (rice wine) using dynamic headspace sampling and stir bar sorptive extraction coupled with gas chromatography-mass spectrometry. 2014 Food Chem pmid:24001815
Bhattacharyya S et al. Sol-gel silica controlled release thin films for the inhibition of methicillin-resistant Staphylococcus aureus. 2014 Biomaterials pmid:24099711
Matsuzawa T et al. EFdA, a reverse transcriptase inhibitor, potently blocks HIV-1 ex vivo infection of Langerhans cells within epithelium. 2014 J. Invest. Dermatol. pmid:24384694
Ronderos DS et al. Farnesol-detecting olfactory neurons in Drosophila. 2014 J. Neurosci. pmid:24623773
Lu Y et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24449897
Sakane C et al. Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives. 2014 Biochem. Biophys. Res. Commun. pmid:24406160
Sabra A et al. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae. 2014 Infect. Immun. pmid:24191303
Chen Y et al. Targeted delivery of curcumin to tumors via PEG-derivatized FTS-based micellar system. 2014 AAPS J pmid:24706375
Schmukler E et al. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death. 2014 Oncotarget pmid:24368422
Cotoras M et al. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea. 2013 Jan-Feb Mycologia pmid:22962358
Alves FR et al. Biofilm biomass disruption by natural substances with potential for endodontic use. 2013 Jan-Feb Braz Oral Res pmid:23306623
de Oliveira Júnior WM et al. Farnesol: antinociceptive effect and histopathological analysis of the striatum and hippocampus of mice. 2013 Fundam Clin Pharmacol pmid:22340189
Cordeiro RA et al. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. 2013 Med. Mycol. pmid:22712455
Farag MA and Al-Mahdy DA Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. 2013 Nat. Prod. Res. pmid:22690913
Zhang X et al. PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel. 2013 Bioconjug. Chem. pmid:23425093
Brilhante RS et al. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. 2013 Antimicrob. Agents Chemother. pmid:23459491
Mor A et al. Immunomodulatory properties of farnesoids: the new steroids? 2013 Curr. Med. Chem. pmid:23432580
Langford ML et al. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. 2013 Eukaryotic Cell pmid:23873867
Schmukler E et al. Ras inhibition enhances autophagy, which partially protects cells from death. 2013 Oncotarget pmid:23847721
Wang C et al. Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli. 2013 Metab. Eng. pmid:23608473
Cho SW et al. Positive regulation of osteogenesis by bile acid through FXR. 2013 J. Bone Miner. Res. pmid:23609136
Gouveia V et al. Di- and sesquiterpenoids from Cystoseira genus: structure, intra-molecular transformations and biological activity. 2013 Mini Rev Med Chem pmid:23621654
Rivera-Perez C et al. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes. 2013 Insect Biochem. Mol. Biol. pmid:23639754
Jones S et al. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells. 2013 Nutr Cancer pmid:23659452
Szűcs G et al. Cardioprotection by farnesol: role of the mevalonate pathway. 2013 Cardiovasc Drugs Ther pmid:23673412
Charette N et al. Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. 2013 Cell Death Dis pmid:23348585
Schmukler E et al. Ras inhibition enhances autophagy, which partially protects cells from death. 2013 Oncotarget pmid:23370967
Kraitzer A et al. Mechanisms of antiproliferative drug release from bioresorbable porous structures. 2013 J Biomed Mater Res A pmid:23065767
Barkan B et al. Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis. 2013 Oncotarget pmid:23530091
Faigenbaum R et al. Growth of poorly differentiated endometrial carcinoma is inhibited by combined action of medroxyprogesterone acetate and the Ras inhibitor Salirasib. 2013 Oncotarget pmid:23530112
Xu H et al. Glucanase induces filamentation of the fungal pathogen Candida albicans. 2013 PLoS ONE pmid:23737947
Nunes PM et al. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica. 2013 Bioprocess Biosyst Eng pmid:23715764
Nyati P et al. Farnesyl phosphatase, a Corpora allata enzyme involved in juvenile hormone biosynthesis in Aedes aegypti. 2013 PLoS ONE pmid:23940797
Onono F et al. Efficient use of exogenous isoprenols for protein isoprenylation by MDA-MB-231 cells is regulated independently of the mevalonate pathway. 2013 J. Biol. Chem. pmid:23908355
Schokoroy S et al. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death. 2013 PLoS ONE pmid:24086490
Kloog Y et al. Ras chaperones: new targets for cancer and immunotherapy. 2013 Enzymes pmid:25033809
Pfister C et al. Detection and quantification of farnesol-induced apoptosis in difficult primary cell cultures by TaqMan protein assay. 2013 Apoptosis pmid:23315006
Cerca N et al. Farnesol induces cell detachment from established S. epidermidis biofilms. 2013 J. Antibiot. pmid:23549353
Kuete V and Efferth T Molecular determinants of cancer cell sensitivity and resistance towards the sesquiterpene farnesol. 2013 Pharmazie pmid:23923645
Alves FR et al. Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. 2013 Braz Dent J pmid:23969910
Lazzerini PE et al. Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells. 2013 Joint Bone Spine pmid:22999910
Makovski V et al. Farnesylthiosalicylic acid (salirasib) inhibits Rheb in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. 2012 Int. J. Cancer pmid:21500191
Tashiro M et al. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis. 2012 Med. Mycol. pmid:21954955
Jaggi AS and Singh N Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. 2012 Food Chem. Toxicol. pmid:22326968
Aizman E et al. Ras inhibition by FTS attenuates brain tumor growth in mice by direct antitumor activity and enhanced reactivity of cytotoxic lymphocytes. 2012 Oncotarget pmid:22323550
Qamar W et al. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. 2012 Exp. Lung Res. pmid:22168545
Mans RA et al. Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. 2012 Neuroscience pmid:22192838
Mashiach-Farkash E et al. Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton. 2012 Oncotarget pmid:22776759
Lichtor PA and Miller SJ Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. 2012 Nat Chem pmid:23174978