2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Zvibel I et al. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. 2008 Dig. Dis. Sci. pmid:17934818
Cho T et al. Transcriptional changes in Candida albicans Genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-D-glucosamine medium. 2007 Nihon Ishinkin Gakkai Zasshi pmid:17975531
Abbasnezhad H et al. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. 2008 Colloids Surf B Biointerfaces pmid:17997081
Shchepin R et al. Influence of heterocyclic and oxime-containing farnesol analogs on quorum sensing and pathogenicity in Candida albicans. 2008 Bioorg. Med. Chem. pmid:18037299
Davis-Hanna A et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. 2008 Mol. Microbiol. pmid:18078440
Maher M et al. Activation of TRPA1 by farnesyl thiosalicylic acid. 2008 Mol. Pharmacol. pmid:18171730
Golczak M et al. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. 2008 J. Biol. Chem. pmid:18195010
Semighini CP et al. Inhibition of Fusarium graminearum growth and development by farnesol. 2008 FEMS Microbiol. Lett. pmid:18201191
Blum R et al. Inhibitors of chronically active ras: potential for treatment of human malignancies. 2008 Recent Pat Anticancer Drug Discov pmid:18289122
Teshima K and Kondo T Analytical method for determination of allylic isoprenols in rat tissues by liquid chromatography/tandem mass spectrometry following chemical derivatization with 3-nitrophtalic anhydride. 2008 J Pharm Biomed Anal pmid:18313250
Tsangarakis C et al. Zeolite NaY-promoted cyclization of farnesal: a short route to nanaimoal. 2008 J. Org. Chem. pmid:18321121
Weber K et al. Secretion of E,E-farnesol and biofilm formation in eight different Candida species. 2008 Antimicrob. Agents Chemother. pmid:18332168
Shimomura K et al. Homofarnesals: female sex attractant pheromone components of the southern cowpea weevil, Callosobruchus chinensis. 2008 J. Chem. Ecol. pmid:18351422
Rotblat B et al. The Ras inhibitor farnesylthiosalicylic acid (Salirasib) disrupts the spatiotemporal localization of active Ras: a potential treatment for cancer. 2008 Meth. Enzymol. pmid:18374183
Lorek J et al. Influence of farnesol on the morphogenesis of Aspergillus niger. 2008 J. Basic Microbiol. pmid:18383232
Marcuzzi A et al. Natural isoprenoids are able to reduce inflammation in a mouse model of mevalonate kinase deficiency. 2008 Pediatr. Res. pmid:18391837
Chen CK et al. The effect of mutation of F87 on the properties of CYP102A1-CYP4C7 chimeras: altered regiospecificity and substrate selectivity. 2008 J. Biol. Inorg. Chem. pmid:18392864
Gallagher BM and Hartig WJ Hormonal studies of uridine utilization in an insect cell line CP-1268 derived from the codling moth Laspeyresia pomonella. 1976 In Vitro pmid:184032
Joo JH and Jetten AM NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. 2008 J. Biol. Chem. pmid:18424438
Kebaara BW et al. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. 2008 Eukaryotic Cell pmid:18424510
McAlester G et al. Signal-mediated interactions between Pseudomonas aeruginosa and Candida albicans. 2008 J. Med. Microbiol. pmid:18436588
Mor A et al. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells. 2008 Eur. J. Immunol. pmid:18461565
Duncan RE and Archer MC Farnesol decreases serum triglycerides in rats: identification of mechanisms including up-regulation of PPARalpha and down-regulation of fatty acid synthase in hepatocytes. 2008 Lipids pmid:18509688
Zhao M et al. Determination of salirasib (S-trans,trans-farnesylthiosalicylic acid) in human plasma using liquid chromatography-tandem mass spectrometry. 2008 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:18534927
Schleimer K et al. Competition between native liver and graft in auxiliary liver transplantation in a rat model. 2008 Transplant. Proc. pmid:18555091
Au-Yeung KK et al. Herbal isoprenols induce apoptosis in human colon cancer cells through transcriptional activation of PPARgamma. 2008 Cancer Invest. pmid:18608213
Geraldo IM et al. Rapid antibacterial activity of 2 novel hand soaps: evaluation of the risk of development of bacterial resistance to the antibacterial agents. 2008 Infect Control Hosp Epidemiol pmid:18616390
Jahangir T and Sultana S Benzo(a)pyrene-induced genotoxicity: attenuation by farnesol in a mouse model. 2008 J Enzyme Inhib Med Chem pmid:18618320
Muramatsu M et al. Accumulation of prenyl alcohols by terpenoid biosynthesis inhibitors in various microorganisms. 2008 Appl. Microbiol. Biotechnol. pmid:18636253
Lapczynski A et al. Fragrance material review on farnesol. 2008 Food Chem. Toxicol. pmid:18640198
Hisajima T et al. Protective effects of farnesol against oral candidiasis in mice. 2008 Microbiol. Immunol. pmid:18667031
Savoldi M et al. Farnesol induces the transcriptional accumulation of the Aspergillus nidulans Apoptosis-Inducing Factor (AIF)-like mitochondrial oxidoreductase. 2008 Mol. Microbiol. pmid:18681941
Kotti T et al. Biphasic requirement for geranylgeraniol in hippocampal long-term potentiation. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18685105
Koo H Strategies to enhance the biological effects of fluoride on dental biofilms. 2008 Adv. Dent. Res. pmid:18694872
Scheper MA et al. Farnesol, a fungal quorum-sensing molecule triggers apoptosis in human oral squamous carcinoma cells. 2008 Neoplasia pmid:18714396
Qamar W and Sultana S Farnesol ameliorates massive inflammation, oxidative stress and lung injury induced by intratracheal instillation of cigarette smoke extract in rats: an initial step in lung chemoprevention. 2008 Chem. Biol. Interact. pmid:18793622
Peleg AY et al. Prokaryote-eukaryote interactions identified by using Caenorhabditis elegans. 2008 Proc. Natl. Acad. Sci. U.S.A. pmid:18794525
Cushion MT et al. Biofilm formation by Pneumocystis spp. 2009 Eukaryotic Cell pmid:18820078
de Montellano PR et al. Inhibition of squalene synthetase by farnesyl pyrophosphate analogues. 1977 J. Med. Chem. pmid:189031
Muramatsu M et al. Various oils and detergents enhance the microbial production of farnesol and related prenyl alcohols. 2008 J. Biosci. Bioeng. pmid:18930003
Goldberg L et al. Salirasib (farnesyl thiosalicylic acid) for brain tumor treatment: a convection-enhanced drug delivery study in rats. 2008 Mol. Cancer Ther. pmid:19001442
Cho T et al. [Farnesol as a quorum-sensing molecule in Candida albicans]. 2008 Nihon Ishinkin Gakkai Zasshi pmid:19001754
Cho T and Aoyama T [Quorum sensing in fungal pathogenesis]. 2008 Nippon Rinsho pmid:19069092
Goldberg L et al. New derivatives of farnesylthiosalicylic acid (salirasib) for cancer treatment: farnesylthiosalicylamide inhibits tumor growth in nude mice models. 2009 J. Med. Chem. pmid:19072665
Togashi N et al. Effects of two terpene alcohols on the antibacterial activity and the mode of action of farnesol against Staphylococcus aureus. 2008 Molecules pmid:19078849
Décanis N et al. Farnesol promotes epithelial cell defense against Candida albicans through Toll-like receptor 2 expression, interleukin-6 and human beta-defensin 2 production. 2009 Cytokine pmid:19121950
Ohto C et al. Prenyl alcohol production by expression of exogenous isopentenyl diphosphate isomerase and farnesyl diphosphate synthase genes in Escherichia coli. 2009 Biosci. Biotechnol. Biochem. pmid:19129660
Pando R et al. The Ras antagonist farnesylthiosalicylic acid ameliorates experimental myocarditis in the rat. 2010 Mar-Apr Cardiovasc. Pathol. pmid:19144546
Fujiyama A et al. S-farnesylation and methyl esterification of C-terminal domain of yeast RAS2 protein prior to fatty acid acylation. 1991 J. Biol. Chem. pmid:1917931
Eglin D et al. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. 2010 J Biomed Mater Res A pmid:19191318
Banfi C et al. Proteomic analysis of human low-density lipoprotein reveals the presence of prenylcysteine lyase, a hydrogen peroxide-generating enzyme. 2009 Proteomics pmid:19253276
Ohguro H et al. Carboxyl methylation and farnesylation of transducin gamma-subunit synergistically enhance its coupling with metarhodopsin II. 1991 EMBO J. pmid:1935895
Shirtliff ME et al. Farnesol-induced apoptosis in Candida albicans. 2009 Antimicrob. Agents Chemother. pmid:19364863
Gomes FI et al. Effect of farnesol on planktonic and biofilm cells of Staphylococcus epidermidis. 2009 Curr. Microbiol. pmid:19365686
Derengowski LS et al. Antimicrobial effect of farnesol, a Candida albicans quorum sensing molecule, on Paracoccidioides brasiliensis growth and morphogenesis. 2009 Ann. Clin. Microbiol. Antimicrob. pmid:19402910
Rodríguez C et al. Statins normalize vascular lysyl oxidase down-regulation induced by proatherogenic risk factors. 2009 Cardiovasc. Res. pmid:19406911
Pando R et al. Ras inhibition attenuates myocardial ischemia-reperfusion injury. 2009 Biochem. Pharmacol. pmid:19426696
Schneider-Merck T et al. The Ras inhibitor farnesylthiosalicyclic acid (FTS) prevents nodule formation and development of preneoplastic foci of altered hepatocytes in rats. 2009 Eur. J. Cancer pmid:19427195
Rhome R and Del Poeta M Lipid signaling in pathogenic fungi. 2009 Annu. Rev. Microbiol. pmid:19450140
Chaudhary SC et al. Chemopreventive effect of farnesol on DMBA/TPA-induced skin tumorigenesis: involvement of inflammation, Ras-ERK pathway and apoptosis. 2009 Life Sci. pmid:19470390
Tsimberidou AM et al. Phase 1 first-in-human clinical study of S-trans,trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. 2010 Cancer Chemother. Pharmacol. pmid:19484470
Kraitzer A et al. Novel farnesylthiosalicylate (FTS)-eluting composite structures. 2009 Eur J Pharm Sci pmid:19491026
Abe S et al. Suppression of anti-Candida activity of macrophages by a quorum-sensing molecule, farnesol, through induction of oxidative stress. 2009 Microbiol. Immunol. pmid:19493200
Joo JH and Jetten AM Molecular mechanisms involved in farnesol-induced apoptosis. 2010 Cancer Lett. pmid:19520495
Mor A et al. Ras inhibition increases the frequency and function of regulatory T cells and attenuates type-1 diabetes in non-obese diabetic mice. 2009 Eur. J. Pharmacol. pmid:19527709
Song L Recovery of E,E-farnesol from cultures of yeast erg9 mutants: extraction with polymeric beads and purification by normal-phase chromatography. 2009 Jul-Aug Biotechnol. Prog. pmid:19569196
Muramatsu M et al. Alkaline pH enhances farnesol production by Saccharomyces cerevisiae. 2009 J. Biosci. Bioeng. pmid:19577192
Xiao Y et al. A two-component female-produced pheromone of the spider Pholcus beijingensis. 2009 J. Chem. Ecol. pmid:19579045
Nowak M and Kurnatowski P [Biofilm caused by fungi--structure, quorum sensing, morphogenetic changes, resistance to drugs]. 2009 Wiad Parazytol pmid:19579780
Goldstein JL and Brown MS Regulation of the mevalonate pathway. 1990 Nature pmid:1967820
Rennemeier C et al. Microbial quorum-sensing molecules induce acrosome loss and cell death in human spermatozoa. 2009 Infect. Immun. pmid:19687207
Chen F et al. Tooth-binding micelles for dental caries prevention. 2009 Antimicrob. Agents Chemother. pmid:19704121
Koo H and Jeon JG Naturally occurring molecules as alternative therapeutic agents against cariogenic biofilms. 2009 Adv. Dent. Res. pmid:19717411
Chen CK et al. Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. 2010 J. Biol. Inorg. Chem. pmid:19727859
Doan K et al. In vivo and in vitro skin absorption of lipophilic compounds, dibutyl phthalate, farnesol and geraniol in the hairless guinea pig. 2010 Food Chem. Toxicol. pmid:19747520
Raptis C et al. Acid-catalyzed cyclization of terpenes under homogeneous and heterogeneous conditions as probed through stereoisotopic studies: a concerted process with competing preorganized chair and boat transition states. 2009 Chemistry pmid:19780112
Räikkönen J et al. Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. 2010 Biochem. Pharmacol. pmid:19819230
Mackie H and Overton KH Hydrolysis and isomerization of trans,trans-farnesyl diphosphate by Andrographis tissue-culture enzymes. 1977 Eur. J. Biochem. pmid:198206
Hanker AB et al. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. 2010 Oncogene pmid:19838215
Chagas CE et al. Farnesol inhibits cell proliferation and induces apoptosis after partial hepatectomy in rats. 2009 Sep-Oct Acta Cir Bras pmid:19851690
Jeon JG et al. Influences of naturally occurring agents in combination with fluoride on gene expression and structural organization of Streptococcus mutans in biofilms. 2009 BMC Microbiol. pmid:19863808
Unnanuntana A et al. The effects of farnesol on Staphylococcus aureus biofilms and osteoblasts. An in vitro study. 2009 J Bone Joint Surg Am pmid:19884443
Keung WM Human liver alcohol dehydrogenases catalyze the oxidation of the intermediary alcohols of the shunt pathway of mevalonate metabolism. 1991 Biochem. Biophys. Res. Commun. pmid:1993065
Langford ML et al. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. 2010 Antimicrob. Agents Chemother. pmid:19933803
Mayoral JG et al. NADP+-dependent farnesol dehydrogenase, a corpora allata enzyme involved in juvenile hormone synthesis. 2009 Proc. Natl. Acad. Sci. U.S.A. pmid:19940247
Langford ML et al. Cellular interactions of farnesol, a quorum-sensing molecule produced by Candida albicans. 2009 Future Microbiol pmid:19995193
Yaari-Stark S et al. Ras inhibits endoplasmic reticulum stress in human cancer cells with amplified Myc. 2010 Int. J. Cancer pmid:19998334
Grienke U et al. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. 2010 J. Med. Chem. pmid:20014777
Moya M et al. Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. 2010 Chem. Biol. Interact. pmid:20079722
Deveau A et al. Farnesol induces hydrogen peroxide resistance in Candida albicans yeast by inhibiting the Ras-cyclic AMP signaling pathway. 2010 Eukaryotic Cell pmid:20118211
Lee SJ and Moon HI Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L. 2010 Immunopharmacol Immunotoxicol pmid:20175741
Endo S et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. 2010 Bioorg. Med. Chem. pmid:20304656
Liu P et al. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. 2010 Mar-Apr Mycologia pmid:20361499
Dichtl K et al. Farnesol misplaces tip-localized Rho proteins and inhibits cell wall integrity signalling in Aspergillus fumigatus. 2010 Mol. Microbiol. pmid:20398212
Epplen R et al. Differential effects of ibandronate, docetaxel and farnesol treatment alone and in combination on the growth of prostate cancer cell lines. 2011 Acta Oncol pmid:20429730
Ling Y et al. Synthesis and evaluation of nitric oxide-releasing derivatives of farnesylthiosalicylic acid as anti-tumor agents. 2010 Bioorg. Med. Chem. pmid:20435479
Sarazin A et al. In vitro pro- and anti-inflammatory responses to viable Candida albicans yeasts by a murine macrophage cell line. 2010 Med. Mycol. pmid:20438293
Banke TG et al. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. 2010 Am. J. Physiol., Cell Physiol. pmid:20457836
Biran A et al. Downregulation of survivin and aurora A by histone deacetylase and RAS inhibitors: a new drug combination for cancer therapy. 2011 Int. J. Cancer pmid:20473860
Bustinza-Linares E et al. Salirasib in the treatment of pancreatic cancer. 2010 Future Oncol pmid:20528225