2E,6E-farnesol

2e,6e-farnesol is a lipid of Prenol Lipids (PR) class. 2e,6e-farnesol is associated with abnormalities such as Granulomatous Disease, Chronic, pathologic fistula and Cavitation. The involved functions are known as Regulation, Metabolic Inhibition, cholesterol biosynthetic process, Process and Transcription, Genetic. 2e,6e-farnesol often locates in Plasma membrane, Cytoplasmic matrix, cornified envelope, Epidermis and peroxisome. The associated genes with 2E,6E-farnesol are RAB3A gene, FOSL1 gene, CASP8AP2 gene, RCC1 gene and GALE gene. The related lipids are Sterols, Membrane Lipids and Steroids.

Cross Reference

Introduction

To understand associated biological information of 2E,6E-farnesol, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with 2E,6E-farnesol?

2E,6E-farnesol is suspected in Granulomatous Disease, Chronic, pathologic fistula and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with 2E,6E-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Lung Neoplasms D008175 171 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Mammary Neoplasms, Experimental D008325 67 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Precancerous Conditions D011230 48 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Per page 10 20 50 | Total 42

PubChem Associated disorders and diseases

What pathways are associated with 2E,6E-farnesol

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with 2E,6E-farnesol?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with 2E,6E-farnesol?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with 2E,6E-farnesol?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with 2E,6E-farnesol?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with 2E,6E-farnesol

Download all related citations
Per page 10 20 50 100 | Total 950
Authors Title Published Journal PubMed Link
Busch S and Unruh T The influence of additives on the nanoscopic dynamics of the phospholipid dimyristoylphosphatidylcholine. 2011 Biochim. Biophys. Acta pmid:21036141
Barkan B et al. Phenotypic reversion of invasive neurofibromin-deficient schwannoma by FTS: Ras inhibition reduces BMP4/Erk/Smad signaling. 2011 Mol. Cancer Ther. pmid:21632464
Fitzpatrick AH et al. Farnesol kinase is involved in farnesol metabolism, ABA signaling and flower development in Arabidopsis. 2011 Plant J. pmid:21395888
Nevo Y et al. The Ras antagonist, farnesylthiosalicylic acid (FTS), decreases fibrosis and improves muscle strength in dy/dy mouse model of muscular dystrophy. 2011 PLoS ONE pmid:21445359
Khan R and Sultana S Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. 2011 Chem. Biol. Interact. pmid:21453689
Gonçalves O et al. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. 2011 Mutat. Res. pmid:21453784
Ling Y et al. Novel nitric oxide-releasing derivatives of farnesylthiosalicylic acid: synthesis and evaluation of antihepatocellular carcinoma activity. 2011 J. Med. Chem. pmid:21504204
Jeon JG et al. Influences of trans-trans farnesol, a membrane-targeting sesquiterpenoid, on Streptococcus mutans physiology and survival within mixed-species oral biofilms. 2011 Int J Oral Sci pmid:21485314
Navarro-Moll MC et al. In vitro and in vivo activity of three sesquiterpenes against L(3) larvae of Anisakis type I. 2011 Exp. Parasitol. pmid:20932829
Huang J et al. Electrohydrodynamic deposition of nanotitanium doped hydroxyapatite coating for medical and dental applications. 2011 J Mater Sci Mater Med pmid:21243517
Hogan DA and Muhlschlegel FA Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. 2011 Curr. Opin. Microbiol. pmid:22014725
Krasowski MD et al. The evolution of farnesoid X, vitamin D, and pregnane X receptors: insights from the green-spotted pufferfish (Tetraodon nigriviridis) and other non-mammalian species. 2011 BMC Biochem. pmid:21291553
Bai C et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. 2011 Mol. Microbiol. pmid:21992526
Endo S et al. Roles of rat and human aldo-keto reductases in metabolism of farnesol and geranylgeraniol. 2011 Chem. Biol. Interact. pmid:21187079
Cortés M et al. Drimenol: A versatile synthon for compounds with trans-drimane skeleton. 2011 Nat Prod Commun pmid:21560760
Borbath I and Stärkel P Chemoprevention of hepatocellular carcinoma. Proof of concept in animal models. 2011 Acta Gastroenterol. Belg. pmid:21563652
Zhu J et al. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. 2011 PLoS ONE pmid:22205973
Piispanen AE et al. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. 2011 Eukaryotic Cell pmid:21908593
Kraitzer A et al. Composite fiber structures with antiproliferative agents exhibit advantageous drug delivery and cell growth inhibition in vitro. 2011 J Pharm Sci pmid:20623695
Charron G et al. Alkynyl-farnesol reporters for detection of protein S-prenylation in cells. 2011 Mol Biosyst pmid:21107478
Epplen R et al. Differential effects of ibandronate, docetaxel and farnesol treatment alone and in combination on the growth of prostate cancer cell lines. 2011 Acta Oncol pmid:20429730
Bendena WG et al. Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. 2011 Gen. Comp. Endocrinol. pmid:21354154
Nagai H et al. Development of a novel PPARγ ligand screening system using pinpoint fluorescence-probed protein. 2011 Biosci. Biotechnol. Biochem. pmid:21307572
Rahman NK et al. Enzymatic synthesis of farnesyl laurate in organic solvent: initial water activity, kinetics mechanism, optimization of continuous operation using packed bed reactor and mass transfer studies. 2011 Bioprocess Biosyst Eng pmid:21327986
Gori K et al. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. 2011 FEMS Yeast Res. pmid:22093748
Ganguly S et al. Zap1 control of cell-cell signaling in Candida albicans biofilms. 2011 Eukaryotic Cell pmid:21890817
Dinamarco TM et al. Farnesol-induced cell death in the filamentous fungus Aspergillus nidulans. 2011 Biochem. Soc. Trans. pmid:21936849
Mor A et al. Inhibition of contact sensitivity by farnesylthiosalicylic acid-amide, a potential Rap1 inhibitor. 2011 J. Invest. Dermatol. pmid:21716322
Tsuji F et al. The geranyl-modified tryptophan residue is crucial for ComXRO-E-2 pheromone biological activity. 2011 Bioorg. Med. Chem. Lett. pmid:21636272
Kaneko M et al. Effect of farnesol on mevalonate pathway of Staphylococcus aureus. 2011 J. Antibiot. pmid:21772307
Pando R et al. The Ras antagonist farnesylthiosalicylic acid ameliorates experimental myocarditis in the rat. 2010 Mar-Apr Cardiovasc. Pathol. pmid:19144546
Liu P et al. Farnesol induces apoptosis and oxidative stress in the fungal pathogen Penicillium expansum. 2010 Mar-Apr Mycologia pmid:20361499
Ivanov SS et al. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. 2010 J. Biol. Chem. pmid:20813839
Levy R et al. Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas. 2010 Mol. Cancer Ther. pmid:20682656
Colabardini AC et al. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. 2010 Mol. Microbiol. pmid:21091509
Wang C et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. 2010 Biotechnol. Bioeng. pmid:20552672
Eglin D et al. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. 2010 J Biomed Mater Res A pmid:19191318
Chen CK et al. Scanning chimeragenesis: the approach used to change the substrate selectivity of fatty acid monooxygenase CYP102A1 to that of terpene omega-hydroxylase CYP4C7. 2010 J. Biol. Inorg. Chem. pmid:19727859
Lee SJ and Moon HI Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L. 2010 Immunopharmacol Immunotoxicol pmid:20175741
Hanker AB et al. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. 2010 Oncogene pmid:19838215
Langford ML et al. Activity and toxicity of farnesol towards Candida albicans are dependent on growth conditions. 2010 Antimicrob. Agents Chemother. pmid:19933803
Grienke U et al. Antiviral potential and molecular insight into neuraminidase inhibiting diarylheptanoids from Alpinia katsumadai. 2010 J. Med. Chem. pmid:20014777
Yaari-Stark S et al. Ras inhibits endoplasmic reticulum stress in human cancer cells with amplified Myc. 2010 Int. J. Cancer pmid:19998334
Banke TG et al. Dynamic changes in the TRPA1 selectivity filter lead to progressive but reversible pore dilation. 2010 Am. J. Physiol., Cell Physiol. pmid:20457836
Ling Y et al. Synthesis and evaluation of nitric oxide-releasing derivatives of farnesylthiosalicylic acid as anti-tumor agents. 2010 Bioorg. Med. Chem. pmid:20435479
Sarazin A et al. In vitro pro- and anti-inflammatory responses to viable Candida albicans yeasts by a murine macrophage cell line. 2010 Med. Mycol. pmid:20438293
Lee J et al. Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. 2010 Cell Res. pmid:20603646
Räikkönen J et al. Mevalonate pathway intermediates downregulate zoledronic acid-induced isopentenyl pyrophosphate and ATP analog formation in human breast cancer cells. 2010 Biochem. Pharmacol. pmid:19819230
Doan K et al. In vivo and in vitro skin absorption of lipophilic compounds, dibutyl phthalate, farnesol and geraniol in the hairless guinea pig. 2010 Food Chem. Toxicol. pmid:19747520
Endo S et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. 2010 Bioorg. Med. Chem. pmid:20304656