Farnesyl diphosphate

Farnesyl diphosphate is a lipid of Prenol Lipids (PR) class. Farnesyl diphosphate is associated with abnormalities such as Dental caries and Hyperostosis, Diffuse Idiopathic Skeletal. The involved functions are known as Regulation, Process, Signal, Anabolism and inhibitors. Farnesyl diphosphate often locates in peroxisome, Cytoplasmic matrix, Plasma membrane, soluble and Mitochondria. The associated genes with Farnesyl diphosphate are HSD3B1 gene, ABRA gene, MATN1 gene, SEPSECS gene and MBD2 gene. The related lipids are Sterols, 22-hydroxycholesterol, dehydrosqualene, SK&F 104976 and 25-hydroxycholesterol.

Cross Reference

Introduction

To understand associated biological information of Farnesyl diphosphate, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Farnesyl diphosphate?

Farnesyl diphosphate is suspected in and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Farnesyl diphosphate

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Osteosarcoma D012516 50 associated lipids
Leukemia, Erythroblastic, Acute D004915 41 associated lipids
Hypercholesterolemia D006937 91 associated lipids
Liver Neoplasms, Experimental D008114 46 associated lipids
Endometriosis D004715 29 associated lipids
Leukemia, Myeloid D007951 52 associated lipids
Leukemia-Lymphoma, Adult T-Cell D015459 25 associated lipids
Protozoan Infections D011528 6 associated lipids
Total 10

PubChem Associated disorders and diseases

What pathways are associated with Farnesyl diphosphate

Lipid pathways are not clear in current pathway databases. We organized associated pathways with Farnesyl diphosphate through full-text articles, including metabolic pathways or pathways of biological mechanisms.

Related references are published most in these journals:

Pathway name Related literatures
Loading... please refresh the page if content is not showing up.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Farnesyl diphosphate?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Farnesyl diphosphate?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Farnesyl diphosphate?

Related references are published most in these journals:

Lipid concept Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What genes are associated with Farnesyl diphosphate?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Farnesyl diphosphate?

There are no associated biomedical information in the current reference collection.

NCBI Entrez Crosslinks

All references with Farnesyl diphosphate

Download all related citations
Per page 10 20 50 100 | Total 614
Authors Title Published Journal PubMed Link
Sanders JM et al. Pyridinium-1-yl bisphosphonates are potent inhibitors of farnesyl diphosphate synthase and bone resorption. 2005 J. Med. Chem. pmid:15828834
Han KH et al. HMG-CoA reductase inhibition reduces monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated monocyte recruitment in vivo. 2005 Circulation pmid:15781755
Argmann CA et al. Regulation of macrophage cholesterol efflux through hydroxymethylglutaryl-CoA reductase inhibition: a role for RhoA in ABCA1-mediated cholesterol efflux. 2005 J. Biol. Chem. pmid:15817453
Chatani Y [Minodronic acid hydrate as a new therapeutic agent for osteoporosis]. 2005 Clin Calcium pmid:15632466
van de Donk NW et al. Geranylgeranylated proteins are involved in the regulation of myeloma cell growth. 2005 Clin. Cancer Res. pmid:15701825
Ota K et al. Effect of pitavastatin on transactivation of human serum paraoxonase 1 gene. 2005 Metab. Clin. Exp. pmid:15690306
Kim OT et al. Cloning and expression of a farnesyl diphosphate synthase in Centella asiatica (L.) Urban. 2005 Mol. Cells pmid:15879717
Shellman YG et al. Lovastatin-induced apoptosis in human melanoma cell lines. 2005 Melanoma Res. pmid:15846140
Crespo J et al. Simvastatin inhibits NOR-1 expression induced by hyperlipemia by interfering with CREB activation. 2005 Cardiovasc. Res. pmid:16005304
Ku B et al. Preparation, characterization, and optimization of an in vitro C30 carotenoid pathway. 2005 Appl. Environ. Microbiol. pmid:16269684
Tong H et al. Simultaneous determination of farnesyl and geranylgeranyl pyrophosphate levels in cultured cells. 2005 Anal. Biochem. pmid:15582558
Subramanian T et al. Directed library of anilinogeranyl analogues of farnesyl diphosphate via mixed solid- and solution-phase synthesis. 2005 Org. Lett. pmid:15901146
Takata R et al. Cerivastatin-induced apoptosis of human aortic smooth muscle cells through partial inhibition of basal activation of extracellular signal-regulated kinases. 2004 Jan-Feb Cardiovasc. Pathol. pmid:14761784
Ni S et al. Structure of 2C-methyl-D-erythritol-2,4-cyclodiphosphate synthase from Shewanella oneidensis at 1.6 A: identification of farnesyl pyrophosphate trapped in a hydrophobic cavity. 2004 Acta Crystallogr. D Biol. Crystallogr. pmid:15502301
Kizu A et al. Statins inhibit in vitro calcification of human vascular smooth muscle cells induced by inflammatory mediators. 2004 J. Cell. Biochem. pmid:15389884
Goeke A et al. A novel approach to prezizaane sesquiterpenes. 2004 Chem. Biodivers. pmid:17191831
Heusinger-Ribeiro J et al. Differential effects of simvastatin on mesangial cells. 2004 Kidney Int. pmid:15200425
Dhiman RK et al. Identification of a novel class of omega,E,E-farnesyl diphosphate synthase from Mycobacterium tuberculosis. 2004 J. Lipid Res. pmid:15060088
Chang SY et al. Substrate binding mode and reaction mechanism of undecaprenyl pyrophosphate synthase deduced from crystallographic studies. 2004 Protein Sci. pmid:15044730
Hartman HL et al. Lysine beta311 of protein geranylgeranyltransferase type I partially replaces magnesium. 2004 J. Biol. Chem. pmid:15131129