(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Fibrosis D005355 23 associated lipids
Glioblastoma D005909 27 associated lipids
Glioma D005910 112 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Rocha GR et al. Effect of tt-farnesol and myricetin on in vitro biofilm formed by Streptococcus mutans and Candida albicans. 2018 BMC Complement Altern Med pmid:29444673
Xia J et al. In vitro inhibitory effects of farnesol and interactions between farnesol and antifungals against biofilms of Candida albicans resistant strains. 2017 Biofouling pmid:28317391
Cagliero C et al. Analysis of essential oils and fragrances with a new generation of highly inert gas chromatographic columns coated with ionic liquids. 2017 J Chromatogr A pmid:28343686
Špičáková A et al. Nerolidol and Farnesol Inhibit Some Cytochrome P450 Activities but Did Not Affect Other Xenobiotic-Metabolizing Enzymes in Rat and Human Hepatic Subcellular Fractions. 2017 Molecules pmid:28338641
Wu L et al. Farnesylthiosalicylic acid sensitizes hepatocarcinoma cells to artemisinin derivatives. 2017 PLoS ONE pmid:28182780
Schmukler E et al. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. 2017 PLoS ONE pmid:28151959
Zhu J et al. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. 2016 PLoS ONE pmid:26959814
Torabi S and Mo H Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation. 2016 Exp. Biol. Med. (Maywood) pmid:26660152
Zhao Y et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. 2016 Eur. J. Cancer pmid:27710830
Sun J et al. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. 2016 Acta Biomater pmid:27422196
Bandara HM et al. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. 2016 Mol. Pharm. pmid:27383205
Inoue Y et al. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane. 2016 Biol. Pharm. Bull. pmid:27150138
Léger T et al. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. 2016 Mol. Cell Proteomics pmid:27125826
Cheng HL et al. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. 2016 Oncotarget pmid:26848867
Jung SI et al. Comparison of E,E-Farnesol Secretion and the Clinical Characteristics of Candida albicans Bloodstream Isolates from Different Multilocus Sequence Typing Clades. 2016 PLoS ONE pmid:26848577
Seman-Kamarulzaman AF et al. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. 2016 PLoS ONE pmid:27560927
Supuran CT Nanoparticles for controlled release of anti-biofilm agents WO2014130994 (A1): a patent evaluation. 2015 Expert Opin Ther Pat pmid:26028186
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Kostoulias X et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. 2015 Antimicrob. Agents Chemother. pmid:26482299
Hameiri-Grossman M et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. 2015 Oncotarget pmid:26393682

Table of Content