(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Nerve Sheath Neoplasms D018317 4 associated lipids
Hypergammaglobulinemia D006942 9 associated lipids
Neurilemmoma D009442 10 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Nephritis D009393 19 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
HIV Infections D015658 20 associated lipids
Fibrosis D005355 23 associated lipids
Glioblastoma D005909 27 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Osteosarcoma D012516 50 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Insulin Resistance D007333 99 associated lipids
Glioma D005910 112 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Edema D004487 152 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Schmukler E et al. Continuous treatment with FTS confers resistance to apoptosis and affects autophagy. 2017 PLoS ONE pmid:28151959
Maltese WA and Erdman RA Characterization of isoprenoid involved in the post-translational modification of mammalian cell proteins. 1989 J. Biol. Chem. pmid:2808372
pmid:28043124
pmid:27987234
Vandewaa EA et al. Physiological role of HMG-CoA reductase in regulating egg production by Schistosoma mansoni. 1989 Am. J. Physiol. pmid:2782464
pmid:27796932
Zhao Y et al. 6-C-(E-phenylethenyl)naringenin induces cell growth inhibition and cytoprotective autophagy in colon cancer cells. 2016 Eur. J. Cancer pmid:27710830
pmid:27665610
pmid:27623739
Seman-Kamarulzaman AF et al. Novel NAD+-Farnesal Dehydrogenase from Polygonum minus Leaves. Purification and Characterization of Enzyme in Juvenile Hormone III Biosynthetic Pathway in Plant. 2016 PLoS ONE pmid:27560927
pmid:27440491
Sun J et al. A prodrug micellar carrier assembled from polymers with pendant farnesyl thiosalicylic acid moieties for improved delivery of paclitaxel. 2016 Acta Biomater pmid:27422196
Bandara HM et al. Incorporation of Farnesol Significantly Increases the Efficacy of Liposomal Ciprofloxacin against Pseudomonas aeruginosa Biofilms in Vitro. 2016 Mol. Pharm. pmid:27383205
pmid:27357648
Mohamed MA et al. Polyacrylamide gel miniaturization improves protein visualization and autoradiographic detection. 1989 Anal. Biochem. pmid:2729547
pmid:27239017
Inoue Y et al. Farnesol-Induced Disruption of the Staphylococcus aureus Cytoplasmic Membrane. 2016 Biol. Pharm. Bull. pmid:27150138
pmid:27138105
Léger T et al. The Metacaspase (Mca1p) Restricts O-glycosylation During Farnesol-induced Apoptosis in Candida albicans. 2016 Mol. Cell Proteomics pmid:27125826
pmid:27021020
pmid:26992462
pmid:26972663
pmid:26968084
Zhu J et al. Mevalonate-Farnesal Biosynthesis in Ticks: Comparative Synganglion Transcriptomics and a New Perspective. 2016 PLoS ONE pmid:26959814
pmid:26923572
pmid:26905659
Cheng HL et al. Zoledronate blocks geranylgeranylation not farnesylation to suppress human osteosarcoma U2OS cells metastasis by EMT via Rho A activation and FAK-inhibited JNK and p38 pathways. 2016 Oncotarget pmid:26848867
Jung SI et al. Comparison of E,E-Farnesol Secretion and the Clinical Characteristics of Candida albicans Bloodstream Isolates from Different Multilocus Sequence Typing Clades. 2016 PLoS ONE pmid:26848577
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Casey PJ et al. p21ras is modified by a farnesyl isoprenoid. 1989 Proc. Natl. Acad. Sci. U.S.A. pmid:2682646
Lowy DR and Willumsen BM Protein modification: new clue to Ras lipid glue. 1989 Nature pmid:2677741
Agnew WS and Popják G Squalene synthetase. Stoichiometry and kinetics of presqualene pyrophosphate and squalene synthesis by yeast microsomes. 1978 J. Biol. Chem. pmid:26684
pmid:26669506
Torabi S and Mo H Trans, trans-farnesol as a mevalonate-derived inducer of murine 3T3-F442A pre-adipocyte differentiation. 2016 Exp. Biol. Med. (Maywood) pmid:26660152
pmid:26626450
pmid:26546815
Kostoulias X et al. Impact of a Cross-Kingdom Signaling Molecule of Candida albicans on Acinetobacter baumannii Physiology. 2015 Antimicrob. Agents Chemother. pmid:26482299
pmid:26442918
Hameiri-Grossman M et al. The association between let-7, RAS and HIF-1α in Ewing Sarcoma tumor growth. 2015 Oncotarget pmid:26393682
pmid:26365385
pmid:26341906
Strube-Bloss MF et al. Extracting the Behaviorally Relevant Stimulus: Unique Neural Representation of Farnesol, a Component of the Recruitment Pheromone of Bombus terrestris. 2015 PLoS ONE pmid:26340263
pmid:26318416
Lopez-Medina E et al. Candida albicans Inhibits Pseudomonas aeruginosa Virulence through Suppression of Pyochelin and Pyoverdine Biosynthesis. 2015 PLoS Pathog. pmid:26313907
Joo JH et al. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. 2015 Biochem. Pharmacol. pmid:26275811
Krause J et al. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. 2015 PLoS ONE pmid:26262843
Mogen AB et al. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms. 2015 PLoS ONE pmid:26222384
pmid:26198568
Hargarten JC et al. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration. 2015 Infect. Immun. pmid:26195556
pmid:26162644

Table of Content