(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Body Weight D001835 333 associated lipids
Lung Neoplasms D008175 171 associated lipids
Adenocarcinoma D000230 166 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Glioma D005910 112 associated lipids
Insulin Resistance D007333 99 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Osteosarcoma D012516 50 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Glioblastoma D005909 27 associated lipids
Fibrosis D005355 23 associated lipids
HIV Infections D015658 20 associated lipids
Nephritis D009393 19 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Neurilemmoma D009442 10 associated lipids
Hypergammaglobulinemia D006942 9 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Cordeiro RA et al. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. 2013 Med. Mycol. pmid:22712455
Zhang X et al. PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel. 2013 Bioconjug. Chem. pmid:23425093
Brilhante RS et al. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. 2013 Antimicrob. Agents Chemother. pmid:23459491
Cho SW et al. Positive regulation of osteogenesis by bile acid through FXR. 2013 J. Bone Miner. Res. pmid:23609136
Kraitzer A et al. Mechanisms of antiproliferative drug release from bioresorbable porous structures. 2013 J Biomed Mater Res A pmid:23065767
Barkan B et al. Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis. 2013 Oncotarget pmid:23530091
Faigenbaum R et al. Growth of poorly differentiated endometrial carcinoma is inhibited by combined action of medroxyprogesterone acetate and the Ras inhibitor Salirasib. 2013 Oncotarget pmid:23530112
Lazzerini PE et al. Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells. 2013 Joint Bone Spine pmid:22999910
Piérard GE et al. Miconazole, a pharmacological barrier to skin fungal infections. 2012 Expert Opin Pharmacother pmid:22568580
Jaggi AS and Singh N Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. 2012 Food Chem. Toxicol. pmid:22326968
Mor A et al. Celecoxib enhances the anti-inflammatory effects of farnesylthiosalicylic acid on T cells independent of prostaglandin E(2) production. 2012 Inflammation pmid:22688643
Cordeiro Rde A et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. 2012 Vet. Microbiol. pmid:22580194
Costa CB et al. Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. 2012 Anticancer Res. pmid:22399601
Lindsay AK et al. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. 2012 Eukaryotic Cell pmid:22886999
Fu MS et al. Functional characterization of the small heat shock protein Hsp12p from Candida albicans. 2012 PLoS ONE pmid:22880130
Lichtor PA and Miller SJ Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. 2012 Nat Chem pmid:23174978
Shin KO et al. Terpene alcohols inhibit de novo sphingolipid biosynthesis. 2012 Planta Med. pmid:22274813
Mologni L et al. Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. 2012 PLoS ONE pmid:23227266
Wartenberg D et al. Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. 2012 J Proteomics pmid:22634043
Falsetta ML et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. 2012 Antimicrob. Agents Chemother. pmid:22985885

Table of Content