(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Lupus Erythematosus, Systemic D008180 43 associated lipids
Osteosarcoma D012516 50 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Insulin Resistance D007333 99 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Edema D004487 152 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Kafri M et al. Inhibition of Ras attenuates the course of experimental autoimmune neuritis. 2005 J. Neuroimmunol. pmid:16154640
Taylor MM et al. Enhanced apoptosis through farnesol inhibition of phospholipase D signal transduction. 2005 FEBS J. pmid:16176276
Lakshman R et al. Use of CYP2E1-transfected human liver cell lines in elucidating the actions of ethanol. 2005 Alcohol. Clin. Exp. Res. pmid:16205373
Lagace TA and Ridgway ND Induction of apoptosis by lipophilic activators of CTP:phosphocholine cytidylyltransferase alpha (CCTalpha). 2005 Biochem. J. pmid:16097951
Chen AP et al. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase. 2005 Biochem. J. pmid:15447632
Frosch PJ et al. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix. 2005 Contact Derm. pmid:15859993
Frosch PJ et al. Patch testing with a new fragrance mix - reactivity to the individual constituents and chemical detection in relevant cosmetic products. 2005 Contact Derm. pmid:15859994
Koo H et al. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. 2005 J. Dent. Res. pmid:16246933
Shearer AG and Hampton RY Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. 2005 EMBO J. pmid:15635451
Williams JM and Savage CO Characterization of the regulation and functional consequences of p21ras activation in neutrophils by antineutrophil cytoplasm antibodies. 2005 J. Am. Soc. Nephrol. pmid:15548565
Aronovich R et al. Antiphospholipid antibodies, thrombin and LPS activate brain endothelial cells and Ras-dependent pathways through distinct mechanisms. 2005 Immunobiology pmid:16325498
Westwater C et al. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. 2005 Eukaryotic Cell pmid:16215173
Braun PC The effect of farnesol on amino acid incorporation by a wild-type and cell-wall variant strain of Candida albicans. 2005 Can. J. Microbiol. pmid:16234870
Yu JS et al. Synthesis of farnesol isomers via a modified Wittig procedure. 2005 Org. Lett. pmid:16235893
Navarathna DH et al. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. 2005 J. Antimicrob. Chemother. pmid:16239285
Ferri N et al. Isothiazole dioxide derivative 6n inhibits vascular smooth muscle cell proliferation and protein farnesylation. 2005 Biochem. Pharmacol. pmid:16257390
McMahon LP et al. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. 2005 Mol. Endocrinol. pmid:15459249
Mosel DD et al. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. 2005 Appl. Environ. Microbiol. pmid:16085901
Cao YY et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. 2005 Antimicrob. Agents Chemother. pmid:15673737
Blum R et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. 2005 Cancer Res. pmid:15705901
Hubálek F et al. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. 2005 J. Biol. Chem. pmid:15710600
Katsuyama M et al. A novel method to control the balance of skin microflora. Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics. 2005 J. Dermatol. Sci. pmid:15927813
Katsuyama M et al. A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. 2005 J. Dermatol. Sci. pmid:15927814
Kang L et al. SMGA gels for the skin permeation of haloperidol. 2005 J Control Release pmid:15975680
Yue W et al. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. 2005 Int. J. Cancer pmid:15957161
Bachireddy P et al. Getting at MYC through RAS. 2005 Clin. Cancer Res. pmid:15958607
Yaari S et al. Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. 2005 Clin. Cancer Res. pmid:15958613
Rowat AC et al. Effects of farnesol on the physical properties of DMPC membranes. 2005 Biochim. Biophys. Acta pmid:15963943
Jahangir T et al. Alleviation of free radical mediated oxidative and genotoxic effects of cadmium by farnesol in Swiss albino mice. 2005 Redox Rep. pmid:16438802
Ruiz-Velasco N et al. Statins upregulate CD36 expression in human monocytes, an effect strengthened when combined with PPAR-gamma ligands Putative contribution of Rho GTPases in statin-induced CD36 expression. 2004 Biochem. Pharmacol. pmid:14698043
Yang Z et al. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. 2004 J. Chem. Ecol. pmid:15139312
Inoue Y et al. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. 2004 FEMS Microbiol. Lett. pmid:15321680
Hogan DA et al. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. 2004 Mol. Microbiol. pmid:15554963
Luxová A et al. Absolute configuration of chiral terpenes in marking pheromones of bumblebees and cuckoo bumblebees. 2004 Chirality pmid:15034905
Murataliev MB et al. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. 2004 Biochemistry pmid:14967018
McPherson RA et al. The novel Ras antagonist, farnesylthiosalicylate, suppresses growth of prostate cancer in vitro. 2004 Prostate pmid:14968433
Hornby JM et al. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. 2004 Appl. Environ. Microbiol. pmid:15006753
Wozniak M et al. Alternative farnesoid structures induce different conformational outcomes upon the Drosophila ortholog of the retinoid X receptor, ultraspiracle. 2004 Insect Biochem. Mol. Biol. pmid:15522611
Rudi A et al. Likonides A and B: new ansa farnesyl quinols from the marine sponge Hyatella sp. 2004 Org. Lett. pmid:15496087
Reif S et al. Treatment of thioacetamide-induced liver cirrhosis by the Ras antagonist, farnesylthiosalicylic acid. 2004 J. Hepatol. pmid:15288472
Staines AG et al. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. 2004 Biochem. J. pmid:15320866
Kruppa M et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. 2004 Eukaryotic Cell pmid:15302838
Fukuda S and Pelus LM Activated H-Ras regulates hematopoietic cell survival by modulating Survivin. 2004 Biochem. Biophys. Res. Commun. pmid:15369798
Chin PC et al. The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. 2004 J. Neurochem. pmid:15255937
Dumitru R et al. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. 2004 Antimicrob. Agents Chemother. pmid:15215080
Rodrigues Goulart H et al. Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. 2004 Antimicrob. Agents Chemother. pmid:15215101
Schnuch A et al. Contact allergy to farnesol in 2021 consecutively patch tested patients. Results of the IVDK. 2004 Contact Derm. pmid:15153123
Hornby JM and Nickerson KW Enhanced production of farnesol by Candida albicans treated with four azoles. 2004 Antimicrob. Agents Chemother. pmid:15155241
DeBarber AE et al. Omega-hydroxylation of farnesol by mammalian cytochromes p450. 2004 Biochim. Biophys. Acta pmid:15158752
Sato T et al. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. 2004 Biol. Pharm. Bull. pmid:15133261

Table of Content