(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Lupus Erythematosus, Systemic D008180 43 associated lipids
Osteosarcoma D012516 50 associated lipids
Pancreatic Neoplasms D010190 77 associated lipids
Insulin Resistance D007333 99 associated lipids
Glioma D005910 112 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Prostatic Neoplasms D011471 126 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Edema D004487 152 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Nasr N et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. 2012 Blood pmid:22677126
Wartenberg D et al. Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. 2012 J Proteomics pmid:22634043
Agassandian M et al. Calcium-calmodulin kinase I cooperatively regulates nucleocytoplasmic shuttling of CCTα by accessing a nuclear export signal. 2012 Mol. Biol. Cell pmid:22621903
Cerca N et al. Confocal laser scanning microscopy analysis of S. epidermidis biofilms exposed to farnesol, vancomycin and rifampicin. 2012 BMC Res Notes pmid:22591918
Cordeiro Rde A et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. 2012 Vet. Microbiol. pmid:22580194
Piérard GE et al. Miconazole, a pharmacological barrier to skin fungal infections. 2012 Expert Opin Pharmacother pmid:22568580
Laheru D et al. Integrated preclinical and clinical development of S-trans, trans-Farnesylthiosalicylic Acid (FTS, Salirasib) in pancreatic cancer. 2012 Invest New Drugs pmid:22547163
Berrocal A et al. Quorum sensing activity in Ophiostoma ulmi: effects of fusel oils and branched chain amino acids on yeast-mycelial dimorphism. 2012 J. Appl. Microbiol. pmid:22519968
András IE et al. Lipid rafts and functional caveolae regulate HIV-induced amyloid beta accumulation in brain endothelial cells. 2012 Biochem. Biophys. Res. Commun. pmid:22490665
Lerro KA and Prestwich GD Cloning and sequencing of a cDNA for the hemolymph juvenile hormone binding protein of larval Manduca sexta. 1990 J. Biol. Chem. pmid:2246263
Goldberg L et al. FTS and 2-DG induce pancreatic cancer cell death and tumor shrinkage in mice. 2012 Cell Death Dis pmid:22419113
Costa CB et al. Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. 2012 Anticancer Res. pmid:22399601
de Oliveira Júnior WM et al. Farnesol: antinociceptive effect and histopathological analysis of the striatum and hippocampus of mice. 2013 Fundam Clin Pharmacol pmid:22340189
Jaggi AS and Singh N Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. 2012 Food Chem. Toxicol. pmid:22326968
Aizman E et al. Ras inhibition by FTS attenuates brain tumor growth in mice by direct antitumor activity and enhanced reactivity of cytotoxic lymphocytes. 2012 Oncotarget pmid:22323550
Brilhante RS et al. Sesquiterpene farnesol contributes to increased susceptibility to β-lactams in strains of Burkholderia pseudomallei. 2012 Antimicrob. Agents Chemother. pmid:22290941
Shin KO et al. Terpene alcohols inhibit de novo sphingolipid biosynthesis. 2012 Planta Med. pmid:22274813
Zhu J et al. Farnesol-induced apoptosis in Candida albicans is mediated by Cdr1-p extrusion and depletion of intracellular glutathione. 2011 PLoS ONE pmid:22205973
Mans RA et al. Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. 2012 Neuroscience pmid:22192838
Zhang L et al. Bisbibenzyls, a new type of antifungal agent, inhibit morphogenesis switch and biofilm formation through upregulation of DPP3 in Candida albicans. 2011 PLoS ONE pmid:22174935
Lai RK et al. The gamma subunit of transducin is farnesylated. 1990 Proc. Natl. Acad. Sci. U.S.A. pmid:2217200
Qamar W et al. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. 2012 Exp. Lung Res. pmid:22168545
Green SA et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). 2012 J. Exp. Bot. pmid:22162874
Yu LH et al. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. 2012 Antimicrob. Agents Chemother. pmid:22106223
Gori K et al. Alcohol-based quorum sensing plays a role in adhesion and sliding motility of the yeast Debaryomyces hansenii. 2011 FEMS Yeast Res. pmid:22093748
Madhani HD Quorum sensing in fungi: Q&A. 2011 PLoS Pathog. pmid:22046125
Hogan DA and Muhlschlegel FA Candida albicans developmental regulation: adenylyl cyclase as a coincidence detector of parallel signals. 2011 Curr. Opin. Microbiol. pmid:22014725
Bai C et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. 2011 Mol. Microbiol. pmid:21992526
Tashiro M et al. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis. 2012 Med. Mycol. pmid:21954955
Dinamarco TM et al. Farnesol-induced cell death in the filamentous fungus Aspergillus nidulans. 2011 Biochem. Soc. Trans. pmid:21936849
Piispanen AE et al. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. 2011 Eukaryotic Cell pmid:21908593
Oron T et al. Prevention of induced colitis in mice by the ras antagonist farnesylthiosalicylic acid. 2012 Dig. Dis. Sci. pmid:21901261
Ganguly S et al. Zap1 control of cell-cell signaling in Candida albicans biofilms. 2011 Eukaryotic Cell pmid:21890817
Stärkel P et al. Ras inhibition in hepatocarcinoma by S-trans-trans-farnesylthiosalicyclic acid: association of its tumor preventive effect with cell proliferation, cell cycle events, and angiogenesis. 2012 Mol. Carcinog. pmid:21882255
Goto T et al. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21862726
Teodoro JS et al. Hepatic FXR: key regulator of whole-body energy metabolism. 2011 Trends Endocrinol. Metab. pmid:21862343
Pammi M et al. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. 2011 Pediatr. Res. pmid:21857375
Riely GJ et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. 2011 J Thorac Oncol pmid:21847063
Nishimori R et al. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. 2011 Biochemistry pmid:21846125
Jackson JH et al. Farnesol modification of Kirsten-ras exon 4B protein is essential for transformation. 1990 Proc. Natl. Acad. Sci. U.S.A. pmid:2183224
Gomes F et al. Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. 2011 Curr. Microbiol. pmid:21800262
Kaneko M et al. Effect of farnesol on mevalonate pathway of Staphylococcus aureus. 2011 J. Antibiot. pmid:21772307
Sharma M and Prasad R The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. 2011 Antimicrob. Agents Chemother. pmid:21768514
Fitzpatrick AH et al. Roles for farnesol and ABA in Arabidopsis flower development. 2011 Plant Signal Behav pmid:21758018
Mor A et al. Ras inhibition induces insulin sensitivity and glucose uptake. 2011 PLoS ONE pmid:21738773
Yoo S et al. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. 2011 Caries Res. pmid:21720161
Mor A et al. Inhibition of contact sensitivity by farnesylthiosalicylic acid-amide, a potential Rap1 inhibitor. 2011 J. Invest. Dermatol. pmid:21716322
Hall RA et al. The quorum-sensing molecules farnesol/homoserine lactone and dodecanol operate via distinct modes of action in Candida albicans. 2011 Eukaryotic Cell pmid:21666074
Shareck J and Belhumeur P Modulation of morphogenesis in Candida albicans by various small molecules. 2011 Eukaryotic Cell pmid:21642508
Tsuji F et al. The geranyl-modified tryptophan residue is crucial for ComXRO-E-2 pheromone biological activity. 2011 Bioorg. Med. Chem. Lett. pmid:21636272

Table of Content