(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Pancreatic Neoplasms D010190 77 associated lipids
Osteosarcoma D012516 50 associated lipids
Lupus Erythematosus, Systemic D008180 43 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Glioblastoma D005909 27 associated lipids
Fibrosis D005355 23 associated lipids
HIV Infections D015658 20 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
Nephritis D009393 19 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Kafri M et al. Inhibition of Ras attenuates the course of experimental autoimmune neuritis. 2005 J. Neuroimmunol. pmid:16154640
Lakshman R et al. Use of CYP2E1-transfected human liver cell lines in elucidating the actions of ethanol. 2005 Alcohol. Clin. Exp. Res. pmid:16205373
Lagace TA and Ridgway ND Induction of apoptosis by lipophilic activators of CTP:phosphocholine cytidylyltransferase alpha (CCTalpha). 2005 Biochem. J. pmid:16097951
Chen AP et al. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase. 2005 Biochem. J. pmid:15447632
Frosch PJ et al. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix. 2005 Contact Derm. pmid:15859993
Horn TL et al. Modulation of hepatic and renal drug metabolizing enzyme activities in rats by subchronic administration of farnesol. 2005 Chem. Biol. Interact. pmid:15840382
Laffey SF and Butler G Phenotype switching affects biofilm formation by Candida parapsilosis. 2005 Microbiology (Reading, Engl.) pmid:15817776
Yang SP and Raner GM Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract. 2005 Toxicol. Appl. Pharmacol. pmid:15629189
Shearer AG and Hampton RY Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. 2005 EMBO J. pmid:15635451
Williams JM and Savage CO Characterization of the regulation and functional consequences of p21ras activation in neutrophils by antineutrophil cytoplasm antibodies. 2005 J. Am. Soc. Nephrol. pmid:15548565
Aronovich R et al. Antiphospholipid antibodies, thrombin and LPS activate brain endothelial cells and Ras-dependent pathways through distinct mechanisms. 2005 Immunobiology pmid:16325498
Braun PC The effect of farnesol on amino acid incorporation by a wild-type and cell-wall variant strain of Candida albicans. 2005 Can. J. Microbiol. pmid:16234870
Yu JS et al. Synthesis of farnesol isomers via a modified Wittig procedure. 2005 Org. Lett. pmid:16235893
Navarathna DH et al. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. 2005 J. Antimicrob. Chemother. pmid:16239285
Ferri N et al. Isothiazole dioxide derivative 6n inhibits vascular smooth muscle cell proliferation and protein farnesylation. 2005 Biochem. Pharmacol. pmid:16257390
McMahon LP et al. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. 2005 Mol. Endocrinol. pmid:15459249
Khwaja A et al. The inhibition of human mesangial cell proliferation by S-trans, trans-farnesylthiosalicylic acid. 2005 Kidney Int. pmid:16014024
Mosel DD et al. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. 2005 Appl. Environ. Microbiol. pmid:16085901
Martin SW et al. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. 2005 Eukaryotic Cell pmid:16002645
Enjalbert B and Whiteway M Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. 2005 Eukaryotic Cell pmid:16002646
Cao YY et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. 2005 Antimicrob. Agents Chemother. pmid:15673737
Blum R et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. 2005 Cancer Res. pmid:15705901
Hubálek F et al. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. 2005 J. Biol. Chem. pmid:15710600
Shchepin R et al. Biologically active fluorescent farnesol analogs. 2005 Chem. Biol. pmid:15975508
Yue W et al. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. 2005 Int. J. Cancer pmid:15957161
Bachireddy P et al. Getting at MYC through RAS. 2005 Clin. Cancer Res. pmid:15958607
Yaari S et al. Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. 2005 Clin. Cancer Res. pmid:15958613
Rowat AC et al. Effects of farnesol on the physical properties of DMPC membranes. 2005 Biochim. Biophys. Acta pmid:15963943
Jahangir T et al. Alleviation of free radical mediated oxidative and genotoxic effects of cadmium by farnesol in Swiss albino mice. 2005 Redox Rep. pmid:16438802
Ruiz-Velasco N et al. Statins upregulate CD36 expression in human monocytes, an effect strengthened when combined with PPAR-gamma ligands Putative contribution of Rho GTPases in statin-induced CD36 expression. 2004 Biochem. Pharmacol. pmid:14698043
Yang Z et al. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. 2004 J. Chem. Ecol. pmid:15139312
Inoue Y et al. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. 2004 FEMS Microbiol. Lett. pmid:15321680
Hogan DA et al. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. 2004 Mol. Microbiol. pmid:15554963
Luxová A et al. Absolute configuration of chiral terpenes in marking pheromones of bumblebees and cuckoo bumblebees. 2004 Chirality pmid:15034905
Murataliev MB et al. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. 2004 Biochemistry pmid:14967018
McPherson RA et al. The novel Ras antagonist, farnesylthiosalicylate, suppresses growth of prostate cancer in vitro. 2004 Prostate pmid:14968433
Wozniak M et al. Alternative farnesoid structures induce different conformational outcomes upon the Drosophila ortholog of the retinoid X receptor, ultraspiracle. 2004 Insect Biochem. Mol. Biol. pmid:15522611
Rudi A et al. Likonides A and B: new ansa farnesyl quinols from the marine sponge Hyatella sp. 2004 Org. Lett. pmid:15496087
Shalom-Feuerstein R et al. Restoration of sensitivity to anoikis in Ras-transformed rat intestinal epithelial cells by a Ras inhibitor. 2004 Cell Death Differ. pmid:14576773
Reif S et al. Treatment of thioacetamide-induced liver cirrhosis by the Ras antagonist, farnesylthiosalicylic acid. 2004 J. Hepatol. pmid:15288472
Staines AG et al. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. 2004 Biochem. J. pmid:15320866
Kruppa M et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. 2004 Eukaryotic Cell pmid:15302838
Fukuda S and Pelus LM Activated H-Ras regulates hematopoietic cell survival by modulating Survivin. 2004 Biochem. Biophys. Res. Commun. pmid:15369798
Chin PC et al. The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. 2004 J. Neurochem. pmid:15255937
Dumitru R et al. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. 2004 Antimicrob. Agents Chemother. pmid:15215080
Rodrigues Goulart H et al. Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. 2004 Antimicrob. Agents Chemother. pmid:15215101
Schnuch A et al. Contact allergy to farnesol in 2021 consecutively patch tested patients. Results of the IVDK. 2004 Contact Derm. pmid:15153123
Hornby JM and Nickerson KW Enhanced production of farnesol by Candida albicans treated with four azoles. 2004 Antimicrob. Agents Chemother. pmid:15155241
DeBarber AE et al. Omega-hydroxylation of farnesol by mammalian cytochromes p450. 2004 Biochim. Biophys. Acta pmid:15158752
George J et al. Inhibition of intimal thickening in the rat carotid artery injury model by a nontoxic Ras inhibitor. 2004 Arterioscler. Thromb. Vasc. Biol. pmid:14670932

Table of Content