(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Cell Transformation, Neoplastic D002471 126 associated lipids
Thyroid Neoplasms D013964 33 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Fibrosis D005355 23 associated lipids
Leukemia, Myeloid, Acute D015470 19 associated lipids
Hypergammaglobulinemia D006942 9 associated lipids
Glioblastoma D005909 27 associated lipids
Nephritis D009393 19 associated lipids
HIV Infections D015658 20 associated lipids
Neurilemmoma D009442 10 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Yue W et al. Mechanisms of acquired resistance to endocrine therapy in hormone-dependent breast cancer cells. 2007 Aug-Sep J. Steroid Biochem. Mol. Biol. pmid:17616457
Kuroda M et al. Sesquiterpene farnesol inhibits recycling of the C55 lipid carrier of the murein monomer precursor contributing to increased susceptibility to beta-lactams in methicillin-resistant Staphylococcus aureus. 2007 J. Antimicrob. Chemother. pmid:17242033
Nokhodchi A et al. The effect of terpene concentrations on the skin penetration of diclofenac sodium. 2007 Int J Pharm pmid:17174049
Cho T et al. Transcriptional changes in Candida albicans Genes by both farnesol and high cell density at an early stage of morphogenesis in N-acetyl-D-glucosamine medium. 2007 Nihon Ishinkin Gakkai Zasshi pmid:17975531
Kuroda M et al. Sesquiterpene farnesol as a competitive inhibitor of lipase activity of Staphylococcus aureus. 2007 FEMS Microbiol. Lett. pmid:17559400
Zundelevich A et al. Suppression of lung cancer tumor growth in a nude mouse model by the Ras inhibitor salirasib (farnesylthiosalicylic acid). 2007 Mol. Cancer Ther. pmid:17541036
Navarathna DH et al. Exogenous farnesol interferes with the normal progression of cytokine expression during candidiasis in a mouse model. 2007 Infect. Immun. pmid:17517874
Uppuluri P et al. Farnesol-mediated inhibition of Candida albicans yeast growth and rescue by a diacylglycerol analogue. 2007 Yeast pmid:17583896
Crowell DN et al. Arabidopsis thaliana plants possess a specific farnesylcysteine lyase that is involved in detoxification and recycling of farnesylcysteine. 2007 Plant J. pmid:17425716
Blum R et al. Gene expression signature of human cancer cell lines treated with the ras inhibitor salirasib (S-farnesylthiosalicylic acid). 2007 Cancer Res. pmid:17409441
Rossignol T et al. Transcriptional response of Candida parapsilosis following exposure to farnesol. 2007 Antimicrob. Agents Chemother. pmid:17684006
Cugini C et al. Farnesol, a common sesquiterpene, inhibits PQS production in Pseudomonas aeruginosa. 2007 Mol. Microbiol. pmid:17640272
Shintre MS et al. Evaluation of an alcohol-based surgical hand disinfectant containing a synergistic combination of farnesol and benzethonium chloride for immediate and persistent activity against resident hand flora of volunteers and with a novel in vitro pig skin model. 2007 Infect Control Hosp Epidemiol pmid:17265401
Zhang L and Hill RP Hypoxia enhances metastatic efficiency in HT1080 fibrosarcoma cells by increasing cell survival in lungs, not cell adhesion and invasion. 2007 Cancer Res. pmid:17699784
Joo JH et al. Farnesol-induced apoptosis in human lung carcinoma cells is coupled to the endoplasmic reticulum stress response. 2007 Cancer Res. pmid:17699800
Lee H et al. Characterization of (E,E)-farnesol and its fatty acid esters from anal scent glands of nutria (Myocastor coypus) by gas chromatography-mass spectrometry and gas chromatography-infrared spectrometry. 2007 J Chromatogr A pmid:17709112
Marciano D et al. Neuroprotective effects of the Ras inhibitor S-trans-trans-farnesylthiosalicylic acid, measured by diffusion-weighted imaging after traumatic brain injury in rats. 2007 J. Neurotrauma pmid:17711399
Cheng AX et al. The rice (E)-beta-caryophyllene synthase (OsTPS3) accounts for the major inducible volatile sesquiterpenes. 2007 Phytochemistry pmid:17524436
Cetin A et al. Angiotensin II-induced MAPK phosphorylation mediated by Ras and/or phospholipase C-dependent phosphorylations but not by protein kinase C phosphorylation in cultured rat vascular smooth muscle cells. 2007 Pharmacology pmid:17135774
Hasmim M et al. Zoledronate inhibits endothelial cell adhesion, migration and survival through the suppression of multiple, prenylation-dependent signaling pathways. 2007 J. Thromb. Haemost. pmid:17059425

Table of Content