(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Lung Neoplasms D008175 171 associated lipids
Body Weight D001835 333 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Yang L et al. ZL11n is a novel nitric oxide-releasing derivative of farnesylthiosalicylic acid that induces apoptosis in human hepatoma HepG2 cells via MAPK/mitochondrial pathways. 2011 Biochem. Biophys. Res. Commun. pmid:21621522
Yoo S et al. Antimicrobial traits of tea- and cranberry-derived polyphenols against Streptococcus mutans. 2011 Caries Res. pmid:21720161
Khan R and Sultana S Farnesol attenuates 1,2-dimethylhydrazine induced oxidative stress, inflammation and apoptotic responses in the colon of Wistar rats. 2011 Chem. Biol. Interact. pmid:21453689
Gonçalves O et al. Evaluation of the mutagenicity of sesquiterpenic compounds and their influence on the susceptibility towards antibiotics of two clinically relevant bacterial strains. 2011 Mutat. Res. pmid:21453784
Ling Y et al. Novel nitric oxide-releasing derivatives of farnesylthiosalicylic acid: synthesis and evaluation of antihepatocellular carcinoma activity. 2011 J. Med. Chem. pmid:21504204
Bai C et al. Characterization of a hyperactive Cyr1 mutant reveals new regulatory mechanisms for cellular cAMP levels in Candida albicans. 2011 Mol. Microbiol. pmid:21992526
Piispanen AE et al. Roles of Ras1 membrane localization during Candida albicans hyphal growth and farnesol response. 2011 Eukaryotic Cell pmid:21908593
Biran A et al. Downregulation of survivin and aurora A by histone deacetylase and RAS inhibitors: a new drug combination for cancer therapy. 2011 Int. J. Cancer pmid:20473860
Bendena WG et al. Evidence for differential biosynthesis of juvenile hormone (and related) sesquiterpenoids in Drosophila melanogaster. 2011 Gen. Comp. Endocrinol. pmid:21354154
Madhani HD Quorum sensing in fungi: Q&A. 2011 PLoS Pathog. pmid:22046125
Gomes F et al. Effect of farnesol on structure and composition of Staphylococcus epidermidis biofilm matrix. 2011 Curr. Microbiol. pmid:21800262
Pammi M et al. Farnesol decreases biofilms of Staphylococcus epidermidis and exhibits synergy with nafcillin and vancomycin. 2011 Pediatr. Res. pmid:21857375
Goto T et al. Farnesol, an isoprenoid, improves metabolic abnormalities in mice via both PPARα-dependent and -independent pathways. 2011 Am. J. Physiol. Endocrinol. Metab. pmid:21862726
Fitzpatrick AH et al. Roles for farnesol and ABA in Arabidopsis flower development. 2011 Plant Signal Behav pmid:21758018
Mor A et al. Ras inhibition induces insulin sensitivity and glucose uptake. 2011 PLoS ONE pmid:21738773
Sharma M and Prasad R The quorum-sensing molecule farnesol is a modulator of drug efflux mediated by ABC multidrug transporters and synergizes with drugs in Candida albicans. 2011 Antimicrob. Agents Chemother. pmid:21768514
Nishimori R et al. Biosynthesis of unnatural bacteriochlorophyll c derivatives esterified with α,ω-diols in the green sulfur photosynthetic bacterium Chlorobaculum tepidum. 2011 Biochemistry pmid:21846125
Riely GJ et al. A phase II trial of Salirasib in patients with lung adenocarcinomas with KRAS mutations. 2011 J Thorac Oncol pmid:21847063
Ganguly S et al. Zap1 control of cell-cell signaling in Candida albicans biofilms. 2011 Eukaryotic Cell pmid:21890817
Mor A et al. Inhibition of contact sensitivity by farnesylthiosalicylic acid-amide, a potential Rap1 inhibitor. 2011 J. Invest. Dermatol. pmid:21716322
Tsuji F et al. The geranyl-modified tryptophan residue is crucial for ComXRO-E-2 pheromone biological activity. 2011 Bioorg. Med. Chem. Lett. pmid:21636272
Kaneko M et al. Effect of farnesol on mevalonate pathway of Staphylococcus aureus. 2011 J. Antibiot. pmid:21772307
Pando R et al. The Ras antagonist farnesylthiosalicylic acid ameliorates experimental myocarditis in the rat. 2010 Mar-Apr Cardiovasc. Pathol. pmid:19144546
Ivanov SS et al. Lipidation by the host prenyltransferase machinery facilitates membrane localization of Legionella pneumophila effector proteins. 2010 J. Biol. Chem. pmid:20813839
Levy R et al. Galectin-3 promotes chronic activation of K-Ras and differentiation block in malignant thyroid carcinomas. 2010 Mol. Cancer Ther. pmid:20682656
Colabardini AC et al. Involvement of the Aspergillus nidulans protein kinase C with farnesol tolerance is related to the unfolded protein response. 2010 Mol. Microbiol. pmid:21091509
Gilpin S and Maibach H Allergic contact dermatitis caused by farnesol: clinical relevance. 2010 Cutan Ocul Toxicol pmid:20858058
Charette N et al. Salirasib inhibits the growth of hepatocarcinoma cell lines in vitro and tumor growth in vivo through ras and mTOR inhibition. 2010 Mol. Cancer pmid:20860815
Wang C et al. Farnesol production from Escherichia coli by harnessing the exogenous mevalonate pathway. 2010 Biotechnol. Bioeng. pmid:20552672
Aizman E et al. The combined treatment of Copaxone and Salirasib attenuates experimental autoimmune encephalomyelitis (EAE) in mice. 2010 J. Neuroimmunol. pmid:20869125
Kubesová A et al. Separation of attogram terpenes by the capillary zone electrophoresis with fluorometric detection. 2010 J Chromatogr A pmid:20933239
Bhagatji P et al. Multiple cellular proteins modulate the dynamics of K-ras association with the plasma membrane. 2010 Biophys. J. pmid:21081081
Bhandari J et al. Identification of a novel abscisic acid-regulated farnesol dehydrogenase from Arabidopsis. 2010 Plant Physiol. pmid:20807998
Jin J et al. Farnesol, a potential efflux pump inhibitor in Mycobacterium smegmatis. 2010 Molecules pmid:21042264
Eglin D et al. Farnesol-modified biodegradable polyurethanes for cartilage tissue engineering. 2010 J Biomed Mater Res A pmid:19191318
Tsimberidou AM et al. Phase 1 first-in-human clinical study of S-trans,trans-farnesylthiosalicylic acid (salirasib) in patients with solid tumors. 2010 Cancer Chemother. Pharmacol. pmid:19484470
Joo JH and Jetten AM Molecular mechanisms involved in farnesol-induced apoptosis. 2010 Cancer Lett. pmid:19520495
Lee SJ and Moon HI Immunotoxicity activity of the major essential oil of Filipendula glaberrima against Aedes aegypti L. 2010 Immunopharmacol Immunotoxicol pmid:20175741
Hanker AB et al. Differential requirement of CAAX-mediated posttranslational processing for Rheb localization and signaling. 2010 Oncogene pmid:19838215
Ling Y et al. Synthesis and evaluation of nitric oxide-releasing derivatives of farnesylthiosalicylic acid as anti-tumor agents. 2010 Bioorg. Med. Chem. pmid:20435479
Sarazin A et al. In vitro pro- and anti-inflammatory responses to viable Candida albicans yeasts by a murine macrophage cell line. 2010 Med. Mycol. pmid:20438293
Lee J et al. Proto-oncogenic H-Ras, K-Ras, and N-Ras are involved in muscle differentiation via phosphatidylinositol 3-kinase. 2010 Cell Res. pmid:20603646
Shimomura K et al. 2,3-Dihydrohomofarnesal: female sex attractant pheromone component of Callosobruchus rhodesianus (Pic). 2010 J. Chem. Ecol. pmid:20607368
Gregus P et al. Ultra high performance liquid chromatography tandem mass spectrometry analysis of quorum-sensing molecules of Candida albicans. 2010 J Pharm Biomed Anal pmid:20580513
Dinamarco TM et al. The roles played by Aspergillus nidulans apoptosis-inducing factor (AIF)-like mitochondrial oxidoreductase (AifA) and NADH-ubiquinone oxidoreductases (NdeA-B and NdiA) in farnesol resistance. 2010 Fungal Genet. Biol. pmid:20654725
Cugini C et al. Candida albicans-produced farnesol stimulates Pseudomonas quinolone signal production in LasR-defective Pseudomonas aeruginosa strains. 2010 Microbiology (Reading, Engl.) pmid:20656785
Weber K et al. The quorum-sensing molecule E,E-farnesol--its variable secretion and its impact on the growth and metabolism of Candida species. 2010 Yeast pmid:20641010
Bustinza-Linares E et al. Salirasib in the treatment of pancreatic cancer. 2010 Future Oncol pmid:20528225
Moya M et al. Enhanced steatosis by nuclear receptor ligands: a study in cultured human hepatocytes and hepatoma cells with a characterized nuclear receptor expression profile. 2010 Chem. Biol. Interact. pmid:20079722
Endo S et al. Chromene-3-carboxamide derivatives discovered from virtual screening as potent inhibitors of the tumour maker, AKR1B10. 2010 Bioorg. Med. Chem. pmid:20304656

Table of Content