(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Leukemia, Myeloid, Acute D015470 19 associated lipids
HIV Infections D015658 20 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Zhao M et al. Determination of salirasib (S-trans,trans-farnesylthiosalicylic acid) in human plasma using liquid chromatography-tandem mass spectrometry. 2008 J. Chromatogr. B Analyt. Technol. Biomed. Life Sci. pmid:18534927
Mor A et al. N-Ras or K-Ras inhibition increases the number and enhances the function of Foxp3 regulatory T cells. 2008 Eur. J. Immunol. pmid:18461565
Hisajima T et al. Protective effects of farnesol against oral candidiasis in mice. 2008 Microbiol. Immunol. pmid:18667031
Davis-Hanna A et al. Farnesol and dodecanol effects on the Candida albicans Ras1-cAMP signalling pathway and the regulation of morphogenesis. 2008 Mol. Microbiol. pmid:18078440
Abbasnezhad H et al. Two different mechanisms for adhesion of Gram-negative bacterium, Pseudomonas fluorescens LP6a, to an oil-water interface. 2008 Colloids Surf B Biointerfaces pmid:17997081
Haklai R et al. Orally administered FTS (salirasib) inhibits human pancreatic tumor growth in nude mice. 2008 Cancer Chemother. Pharmacol. pmid:17909812
Zvibel I et al. The effect of Ras inhibition on the proliferation, apoptosis and matrix metalloproteases activity in rat hepatic stellate cells. 2008 Dig. Dis. Sci. pmid:17934818
Journe F et al. Farnesol, a mevalonate pathway intermediate, stimulates MCF-7 breast cancer cell growth through farnesoid-X-receptor-mediated estrogen receptor activation. 2008 Breast Cancer Res. Treat. pmid:17333335
da Silva Morais A et al. Inhibition of the Ras oncoprotein reduces proliferation of hepatocytes in vitro and in vivo in rats. 2008 Clin. Sci. pmid:17678500
Shchepin R et al. Influence of heterocyclic and oxime-containing farnesol analogs on quorum sensing and pathogenicity in Candida albicans. 2008 Bioorg. Med. Chem. pmid:18037299
Semighini CP et al. Inhibition of Fusarium graminearum growth and development by farnesol. 2008 FEMS Microbiol. Lett. pmid:18201191
Golczak M et al. Metabolic basis of visual cycle inhibition by retinoid and nonretinoid compounds in the vertebrate retina. 2008 J. Biol. Chem. pmid:18195010
Maher M et al. Activation of TRPA1 by farnesyl thiosalicylic acid. 2008 Mol. Pharmacol. pmid:18171730
Weber K et al. Secretion of E,E-farnesol and biofilm formation in eight different Candida species. 2008 Antimicrob. Agents Chemother. pmid:18332168
Teshima K and Kondo T Analytical method for determination of allylic isoprenols in rat tissues by liquid chromatography/tandem mass spectrometry following chemical derivatization with 3-nitrophtalic anhydride. 2008 J Pharm Biomed Anal pmid:18313250
Blum R et al. Inhibitors of chronically active ras: potential for treatment of human malignancies. 2008 Recent Pat Anticancer Drug Discov pmid:18289122
Tsangarakis C et al. Zeolite NaY-promoted cyclization of farnesal: a short route to nanaimoal. 2008 J. Org. Chem. pmid:18321121
Joo JH and Jetten AM NF-kappaB-dependent transcriptional activation in lung carcinoma cells by farnesol involves p65/RelA(Ser276) phosphorylation via the MEK-MSK1 signaling pathway. 2008 J. Biol. Chem. pmid:18424438
Kebaara BW et al. Candida albicans Tup1 is involved in farnesol-mediated inhibition of filamentous-growth induction. 2008 Eukaryotic Cell pmid:18424510
Woodard B et al. 3D-QSAR of fungal quorum-sensing inhibiting analogs of farnesol. 2007 Mar-Apr J Environ Sci Health B pmid:17454380

Table of Content