(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Leukemia, Myeloid, Acute D015470 19 associated lipids
HIV Infections D015658 20 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Makovski V et al. Farnesylthiosalicylic acid (salirasib) inhibits Rheb in TSC2-null ELT3 cells: a potential treatment for lymphangioleiomyomatosis. 2012 Int. J. Cancer pmid:21500191
Piérard GE et al. Miconazole, a pharmacological barrier to skin fungal infections. 2012 Expert Opin Pharmacother pmid:22568580
Tashiro M et al. Pravastatin inhibits farnesol production in Candida albicans and improves survival in a mouse model of systemic candidiasis. 2012 Med. Mycol. pmid:21954955
Jaggi AS and Singh N Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. 2012 Food Chem. Toxicol. pmid:22326968
Qamar W et al. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. 2012 Exp. Lung Res. pmid:22168545
Mashiach-Farkash E et al. Computer-based identification of a novel LIMK1/2 inhibitor that synergizes with salirasib to destabilize the actin cytoskeleton. 2012 Oncotarget pmid:22776759
Mor A et al. Celecoxib enhances the anti-inflammatory effects of farnesylthiosalicylic acid on T cells independent of prostaglandin E(2) production. 2012 Inflammation pmid:22688643
Nasr N et al. HIV-1 infection of human macrophages directly induces viperin which inhibits viral production. 2012 Blood pmid:22677126
Cordeiro Rde A et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. 2012 Vet. Microbiol. pmid:22580194
Costa CB et al. Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. 2012 Anticancer Res. pmid:22399601
Han TL et al. The metabolic response of Candida albicans to farnesol under hyphae-inducing conditions. 2012 FEMS Yeast Res. pmid:22846172
Chang W et al. Retigeric acid B attenuates the virulence of Candida albicans via inhibiting adenylyl cyclase activity targeted by enhanced farnesol production. 2012 PLoS ONE pmid:22848547
Lindsay AK et al. Farnesol and cyclic AMP signaling effects on the hypha-to-yeast transition in Candida albicans. 2012 Eukaryotic Cell pmid:22886999
Fu MS et al. Functional characterization of the small heat shock protein Hsp12p from Candida albicans. 2012 PLoS ONE pmid:22880130
Lichtor PA and Miller SJ Combinatorial evolution of site- and enantioselective catalysts for polyene epoxidation. 2012 Nat Chem pmid:23174978
Shin KO et al. Terpene alcohols inhibit de novo sphingolipid biosynthesis. 2012 Planta Med. pmid:22274813
Jin Y and Qiu FG A convergent stereocontrolled total synthesis of (-)-terpestacin. 2012 Org. Biomol. Chem. pmid:22710980
Mologni L et al. Synergistic effects of combined Wnt/KRAS inhibition in colorectal cancer cells. 2012 PLoS ONE pmid:23227266
Wartenberg D et al. Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. 2012 J Proteomics pmid:22634043
Falsetta ML et al. Novel antibiofilm chemotherapy targets exopolysaccharide synthesis and stress tolerance in Streptococcus mutans to modulate virulence expression in vivo. 2012 Antimicrob. Agents Chemother. pmid:22985885

Table of Content