(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Insulin Resistance D007333 99 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Nerve Sheath Neoplasms D018317 4 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Chen M et al. Use of synthetic isoprenoids to target protein prenylation and Rho GTPases in breast cancer invasion. 2014 PLoS ONE pmid:24587105
Matsuzawa T et al. EFdA, a reverse transcriptase inhibitor, potently blocks HIV-1 ex vivo infection of Langerhans cells within epithelium. 2014 J. Invest. Dermatol. pmid:24384694
Ronderos DS et al. Farnesol-detecting olfactory neurons in Drosophila. 2014 J. Neurosci. pmid:24623773
Lu Y et al. Quorum sensing controls hyphal initiation in Candida albicans through Ubr1-mediated protein degradation. 2014 Proc. Natl. Acad. Sci. U.S.A. pmid:24449897
Sabra A et al. Host-pathogen interaction and signaling molecule secretion are modified in the dpp3 knockout mutant of Candida lusitaniae. 2014 Infect. Immun. pmid:24191303
Aizman E et al. Therapeutic effect of farnesylthiosalicylic acid on adjuvant-induced arthritis through suppressed release of inflammatory cytokines. 2014 Clin. Exp. Immunol. pmid:24215151
Zhang X et al. Nanomicellar carriers for targeted delivery of anticancer agents. 2014 Ther Deliv pmid:24341817
Schmukler E et al. Chloroquine synergizes with FTS to enhance cell growth inhibition and cell death. 2014 Oncotarget pmid:24368422
Cotoras M et al. Farnesol induces apoptosis-like phenotype in the phytopathogenic fungus Botrytis cinerea. 2013 Jan-Feb Mycologia pmid:22962358
Alves FR et al. Biofilm biomass disruption by natural substances with potential for endodontic use. 2013 Jan-Feb Braz Oral Res pmid:23306623
de Oliveira Júnior WM et al. Farnesol: antinociceptive effect and histopathological analysis of the striatum and hippocampus of mice. 2013 Fundam Clin Pharmacol pmid:22340189
Cordeiro RA et al. Minimum inhibitory concentrations of amphotericin B, azoles and caspofungin against Candida species are reduced by farnesol. 2013 Med. Mycol. pmid:22712455
Farag MA and Al-Mahdy DA Comparative study of the chemical composition and biological activities of Magnolia grandiflora and Magnolia virginiana flower essential oils. 2013 Nat. Prod. Res. pmid:22690913
Zhang X et al. PEG-farnesylthiosalicylate conjugate as a nanomicellar carrier for delivery of paclitaxel. 2013 Bioconjug. Chem. pmid:23425093
Brilhante RS et al. Effect of farnesol on growth, ergosterol biosynthesis, and cell permeability in Coccidioides posadasii. 2013 Antimicrob. Agents Chemother. pmid:23459491
Mor A et al. Immunomodulatory properties of farnesoids: the new steroids? 2013 Curr. Med. Chem. pmid:23432580
Langford ML et al. Candida albicans Czf1 and Efg1 coordinate the response to farnesol during quorum sensing, white-opaque thermal dimorphism, and cell death. 2013 Eukaryotic Cell pmid:23873867
Wang C et al. Engineered heterologous FPP synthases-mediated Z,E-FPP synthesis in E. coli. 2013 Metab. Eng. pmid:23608473
Cho SW et al. Positive regulation of osteogenesis by bile acid through FXR. 2013 J. Bone Miner. Res. pmid:23609136
Gouveia V et al. Di- and sesquiterpenoids from Cystoseira genus: structure, intra-molecular transformations and biological activity. 2013 Mini Rev Med Chem pmid:23621654
Rivera-Perez C et al. Aldehyde dehydrogenase 3 converts farnesal into farnesoic acid in the corpora allata of mosquitoes. 2013 Insect Biochem. Mol. Biol. pmid:23639754
Jones S et al. β-ionone induces cell cycle arrest and apoptosis in human prostate tumor cells. 2013 Nutr Cancer pmid:23659452
Szűcs G et al. Cardioprotection by farnesol: role of the mevalonate pathway. 2013 Cardiovasc Drugs Ther pmid:23673412
Charette N et al. Salirasib sensitizes hepatocarcinoma cells to TRAIL-induced apoptosis through DR5 and survivin-dependent mechanisms. 2013 Cell Death Dis pmid:23348585
Schmukler E et al. Ras inhibition enhances autophagy, which partially protects cells from death. 2013 Oncotarget pmid:23370967
Kraitzer A et al. Mechanisms of antiproliferative drug release from bioresorbable porous structures. 2013 J Biomed Mater Res A pmid:23065767
Barkan B et al. Ras inhibition boosts galectin-7 at the expense of galectin-1 to sensitize cells to apoptosis. 2013 Oncotarget pmid:23530091
Faigenbaum R et al. Growth of poorly differentiated endometrial carcinoma is inhibited by combined action of medroxyprogesterone acetate and the Ras inhibitor Salirasib. 2013 Oncotarget pmid:23530112
Xu H et al. Glucanase induces filamentation of the fungal pathogen Candida albicans. 2013 PLoS ONE pmid:23737947
Nunes PM et al. Study of trans-trans farnesol effect on hyphae formation by Yarrowia lipolytica. 2013 Bioprocess Biosyst Eng pmid:23715764
Nyati P et al. Farnesyl phosphatase, a Corpora allata enzyme involved in juvenile hormone biosynthesis in Aedes aegypti. 2013 PLoS ONE pmid:23940797
Onono F et al. Efficient use of exogenous isoprenols for protein isoprenylation by MDA-MB-231 cells is regulated independently of the mevalonate pathway. 2013 J. Biol. Chem. pmid:23908355
Schokoroy S et al. Disrupting the oncogenic synergism between nucleolin and Ras results in cell growth inhibition and cell death. 2013 PLoS ONE pmid:24086490
Pfister C et al. Detection and quantification of farnesol-induced apoptosis in difficult primary cell cultures by TaqMan protein assay. 2013 Apoptosis pmid:23315006
Cerca N et al. Farnesol induces cell detachment from established S. epidermidis biofilms. 2013 J. Antibiot. pmid:23549353
Kuete V and Efferth T Molecular determinants of cancer cell sensitivity and resistance towards the sesquiterpene farnesol. 2013 Pharmazie pmid:23923645
Alves FR et al. Antibiofilm and antibacterial activities of farnesol and xylitol as potential endodontic irrigants. 2013 Braz Dent J pmid:23969910
Lazzerini PE et al. Rosuvastatin inhibits spontaneous and IL-1β-induced interleukin-6 production from human cultured osteoblastic cells. 2013 Joint Bone Spine pmid:22999910
Piérard GE et al. Miconazole, a pharmacological barrier to skin fungal infections. 2012 Expert Opin Pharmacother pmid:22568580
Jaggi AS and Singh N Analgesic potential of intrathecal farnesyl thiosalicylic acid and GW 5074 in vincristine-induced neuropathic pain in rats. 2012 Food Chem. Toxicol. pmid:22326968
Qamar W et al. Benzo(a)pyrene-induced pulmonary inflammation, edema, surfactant dysfunction, and injuries in rats: alleviation by farnesol. 2012 Exp. Lung Res. pmid:22168545
Mans RA et al. Simvastatin-mediated enhancement of long-term potentiation is driven by farnesyl-pyrophosphate depletion and inhibition of farnesylation. 2012 Neuroscience pmid:22192838
Mor A et al. Celecoxib enhances the anti-inflammatory effects of farnesylthiosalicylic acid on T cells independent of prostaglandin E(2) production. 2012 Inflammation pmid:22688643
Cordeiro Rde A et al. Farnesol inhibits in vitro growth of the Cryptococcus neoformans species complex with no significant changes in virulence-related exoenzymes. 2012 Vet. Microbiol. pmid:22580194
Costa CB et al. Farnesyltransferase inhibitors: molecular evidence of therapeutic efficacy in acute lymphoblastic leukemia through cyclin D1 inhibition. 2012 Anticancer Res. pmid:22399601
Green SA et al. Identification, functional characterization, and regulation of the enzyme responsible for floral (E)-nerolidol biosynthesis in kiwifruit (Actinidia chinensis). 2012 J. Exp. Bot. pmid:22162874
Shin KO et al. Terpene alcohols inhibit de novo sphingolipid biosynthesis. 2012 Planta Med. pmid:22274813
Jin Y and Qiu FG A convergent stereocontrolled total synthesis of (-)-terpestacin. 2012 Org. Biomol. Chem. pmid:22710980
Wartenberg D et al. Proteome analysis of the farnesol-induced stress response in Aspergillus nidulans--The role of a putative dehydrin. 2012 J Proteomics pmid:22634043
Yu LH et al. Possible inhibitory molecular mechanism of farnesol on the development of fluconazole resistance in Candida albicans biofilm. 2012 Antimicrob. Agents Chemother. pmid:22106223

Table of Content