(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Fibrosis D005355 23 associated lipids
Glioblastoma D005909 27 associated lipids
Glioma D005910 112 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Töyräs A et al. Inhibition of mevalonate pathway is involved in alendronate-induced cell growth inhibition, but not in cytokine secretion from macrophages in vitro. 2003 Eur J Pharm Sci pmid:12885386
Granshaw T et al. Circadian rhythms in Neurospora crassa: farnesol or geraniol allow expression of rhythmicity in the otherwise arrhythmic strains frq10, wc-1, and wc-2. 2003 J. Biol. Rhythms pmid:12932081
Okazaki S et al. [A 13-week subcutaneous toxicity study of prednisolone farnesylate (PNF) in rats]. 1992 J Toxicol Sci pmid:1293320
Nagashima Y et al. [A 13-week percutaneous toxicity study of prednisolone farnesylate (PNF) gel in beagle dogs with a recovery period of 5 weeks]. 1992 J Toxicol Sci pmid:1293321
Nagashima Y et al. [A 52-week percutaneous toxicity study of prednisolone farnesylate (PNF) gel in beagle dogs with a recovery period of 8 weeks]. 1992 J Toxicol Sci pmid:1293322
Taniguchi H et al. [Reproductive and developmental toxicity study of prednisolone farnesylate (PNF)--study by subcutaneous administration of PNF prior to and in the early stages of pregnancy in rats]. 1992 J Toxicol Sci pmid:1293323
Taniguchi H et al. [Reproductive and developmental toxicity study of prednisolone farnesylate (PNF)--study by subcutaneous administration of PNF during the period of fetal organogenesis in rats]. 1992 J Toxicol Sci pmid:1293324
Aso S et al. [Reproductive and developmental toxicity study of prednisolone farnesylate (PNF)--teratogenicity study in rabbits by subcutaneous administration]. 1992 J Toxicol Sci pmid:1293325
Taniguchi H et al. [Reproductive and developmental toxicity study of prednisolone farnesylate (PNF)--study of subcutaneous administration of PNF during the perinatal and lactation periods in rats]. 1992 J Toxicol Sci pmid:1293326
Otsuka M et al. [Mutagenicity studies of prednisolone farnesylate (PNF)]. 1992 J Toxicol Sci pmid:1293327
Uchiyama H et al. [Effects of prednisolone farnesylate (PNF) gel on skin and ocular mucosa]. 1992 J Toxicol Sci pmid:1293328
Okazaki S et al. [A 13-week dermal toxicity study of prednisolone farnesylate (PNF) gel in rats with a recovery period of 5 weeks]. 1992 J Toxicol Sci pmid:1293330
Okazaki S et al. [A 52-week dermal toxicity study of prednisolone farnesylate (PNF) gel in rats with a recovery period of 8 weeks]. 1992 J Toxicol Sci pmid:1293331
Dietrich A et al. Studies on G-protein alpha.betagamma heterotrimer formation reveal a putative S-prenyl-binding site in the alpha subunit. 2003 Biochem. J. pmid:12952523
Shchepin R et al. Quorum sensing in Candida albicans: probing farnesol's mode of action with 40 natural and synthetic farnesol analogs. 2003 Chem. Biol. pmid:12954333
Giricz Z et al. Role of cholesterol-enriched diet and the mevalonate pathway in cardiac nitric oxide synthesis. 2003 Basic Res. Cardiol. pmid:12955403
Cox AD et al. Specific isoprenoid modification is required for function of normal, but not oncogenic, Ras protein. 1992 Mol. Cell. Biol. pmid:1375323
Lowe PN et al. Expression of polyisoprenylated Ras proteins in the insect/baculovirus system. 1992 Biochem. Soc. Trans. pmid:1397645
Nigg EA et al. Targeting lamin proteins to the nuclear envelope: the role of CaaX box modifications. 1992 Biochem. Soc. Trans. pmid:1397650
Akopyan TN et al. Cleavage of farnesylated COOH-terminal heptapeptide of mouse N-ras by brain microsomal membranes: evidence for a carboxypeptidase which specifically removes the COOH-terminal methionine. 1992 Biochem. Biophys. Res. Commun. pmid:1417809
pmid:14296566
Brehm-Stecher BF and Johnson EA Sensitization of Staphylococcus aureus and Escherichia coli to antibiotics by the sesquiterpenoids nerolidol, farnesol, bisabolol, and apritone. 2003 Antimicrob. Agents Chemother. pmid:14506058
Mau CJ et al. Protein farnesyltransferase inhibitors interfere with farnesyl diphosphate binding by rubber transferase. 2003 Eur. J. Biochem. pmid:14511375
Sever N et al. Insig-dependent ubiquitination and degradation of mammalian 3-hydroxy-3-methylglutaryl-CoA reductase stimulated by sterols and geranylgeraniol. 2003 J. Biol. Chem. pmid:14563840
Koo H et al. Inhibition of Streptococcus mutans biofilm accumulation and polysaccharide production by apigenin and tt-farnesol. 2003 J. Antimicrob. Chemother. pmid:14563892
Shalom-Feuerstein R et al. Restoration of sensitivity to anoikis in Ras-transformed rat intestinal epithelial cells by a Ras inhibitor. 2004 Cell Death Differ. pmid:14576773
Sakata T et al. Chemical ecology of oribatid mites III. Chemical composition of oil gland exudates from two oribatid mites, Trhypochthoniellus sp. and Trhypochthonius japonicus (Acari: Trhypochthoniidae). 2003 Exp. Appl. Acarol. pmid:14635814
Li X et al. New polyoxygenated farnesylcyclohexenones, deacetoxyyanuthone A and its hydro derivative from the marine-derived fungus Penicillium sp. 2003 J. Nat. Prod. pmid:14640527
McAnally JA et al. Farnesyl-O-acetylhydroquinone and geranyl-O-acetylhydroquinone suppress the proliferation of murine B16 melanoma cells, human prostate and colon adenocarcinoma cells, human lung carcinoma cells, and human leukemia cells. 2003 Cancer Lett. pmid:14643448
George J et al. Inhibition of intimal thickening in the rat carotid artery injury model by a nontoxic Ras inhibitor. 2004 Arterioscler. Thromb. Vasc. Biol. pmid:14670932
Grossman R et al. Increase in peripheral benzodiazepine receptors and loss of glutamate NMDA receptors in a mouse model of closed head injury: a quantitative autoradiographic study. 2003 Neuroimage pmid:14683703
Ruiz-Velasco N et al. Statins upregulate CD36 expression in human monocytes, an effect strengthened when combined with PPAR-gamma ligands Putative contribution of Rho GTPases in statin-induced CD36 expression. 2004 Biochem. Pharmacol. pmid:14698043
Lochnit G and Geyer R Evidence for the presence of the Kennedy and Bremer- Greenberg pathways in Caenorhabditis elegans. 2003 Acta Biochim. Pol. pmid:14740010
Thorpe JL et al. Germ cell migration in zebrafish is dependent on HMGCoA reductase activity and prenylation. 2004 Dev. Cell pmid:14960282
Murataliev MB et al. Chimeragenesis of the fatty acid binding site of cytochrome P450BM3. Replacement of residues 73-84 with the homologous residues from the insect cytochrome P450 CYP4C7. 2004 Biochemistry pmid:14967018
McPherson RA et al. The novel Ras antagonist, farnesylthiosalicylate, suppresses growth of prostate cancer in vitro. 2004 Prostate pmid:14968433
Rowat AC and Davis JH Farnesol-DMPC phase behaviour: a (2)H-NMR study. 2004 Biochim. Biophys. Acta pmid:15003880
Hornby JM et al. Inoculum size effect in dimorphic fungi: extracellular control of yeast-mycelium dimorphism in Ceratocystis ulmi. 2004 Appl. Environ. Microbiol. pmid:15006753
Luxová A et al. Absolute configuration of chiral terpenes in marking pheromones of bumblebees and cuckoo bumblebees. 2004 Chirality pmid:15034905
Sato T et al. Farnesol, a morphogenetic autoregulatory substance in the dimorphic fungus Candida albicans, inhibits hyphae growth through suppression of a mitogen-activated protein kinase cascade. 2004 Biol. Pharm. Bull. pmid:15133261
Yang Z et al. Host plant volatiles synergize response to sex pheromone in codling moth, Cydia pomonella. 2004 J. Chem. Ecol. pmid:15139312
Schnuch A et al. Contact allergy to farnesol in 2021 consecutively patch tested patients. Results of the IVDK. 2004 Contact Derm. pmid:15153123
Hornby JM and Nickerson KW Enhanced production of farnesol by Candida albicans treated with four azoles. 2004 Antimicrob. Agents Chemother. pmid:15155241
DeBarber AE et al. Omega-hydroxylation of farnesol by mammalian cytochromes p450. 2004 Biochim. Biophys. Acta pmid:15158752
Dumitru R et al. Defined anaerobic growth medium for studying Candida albicans basic biology and resistance to eight antifungal drugs. 2004 Antimicrob. Agents Chemother. pmid:15215080
Rodrigues Goulart H et al. Terpenes arrest parasite development and inhibit biosynthesis of isoprenoids in Plasmodium falciparum. 2004 Antimicrob. Agents Chemother. pmid:15215101
Chin PC et al. The c-Raf inhibitor GW5074 provides neuroprotection in vitro and in an animal model of neurodegeneration through a MEK-ERK and Akt-independent mechanism. 2004 J. Neurochem. pmid:15255937
Bradfute DL et al. Squalene synthase-deficient mutant of Chinese hamster ovary cells. 1992 J. Biol. Chem. pmid:1526971
Reif S et al. Treatment of thioacetamide-induced liver cirrhosis by the Ras antagonist, farnesylthiosalicylic acid. 2004 J. Hepatol. pmid:15288472
Kruppa M et al. The two-component signal transduction protein Chk1p regulates quorum sensing in Candida albicans. 2004 Eukaryotic Cell pmid:15302838
Staines AG et al. Farnesol is glucuronidated in human liver, kidney and intestine in vitro, and is a novel substrate for UGT2B7 and UGT1A1. 2004 Biochem. J. pmid:15320866
Inoue Y et al. The antibacterial effects of terpene alcohols on Staphylococcus aureus and their mode of action. 2004 FEMS Microbiol. Lett. pmid:15321680
Bai M and Prestwich GD Inhibition and activation of porcine squalene epoxidase. 1992 Arch. Biochem. Biophys. pmid:1536566
Fukuda S and Pelus LM Activated H-Ras regulates hematopoietic cell survival by modulating Survivin. 2004 Biochem. Biophys. Res. Commun. pmid:15369798
Chen AP et al. Substrate and product specificities of cis-type undecaprenyl pyrophosphate synthase. 2005 Biochem. J. pmid:15447632
McMahon LP et al. Farnesylthiosalicylic acid inhibits mammalian target of rapamycin (mTOR) activity both in cells and in vitro by promoting dissociation of the mTOR-raptor complex. 2005 Mol. Endocrinol. pmid:15459249
Rudi A et al. Likonides A and B: new ansa farnesyl quinols from the marine sponge Hyatella sp. 2004 Org. Lett. pmid:15496087
Bhavnani BR and Woolever CA Formation of steroids by the pregnant mare. VI. Metabolism of [14C]farnesyl pyrophosphate and [3H]dehydroepiandrosterone injected into the fetus. 1978 Endocrinology pmid:155006
Anant JS and Fung BK In vivo farnesylation of rat rhodopsin kinase. 1992 Biochem. Biophys. Res. Commun. pmid:1550556
Wozniak M et al. Alternative farnesoid structures induce different conformational outcomes upon the Drosophila ortholog of the retinoid X receptor, ultraspiracle. 2004 Insect Biochem. Mol. Biol. pmid:15522611
Williams JM and Savage CO Characterization of the regulation and functional consequences of p21ras activation in neutrophils by antineutrophil cytoplasm antibodies. 2005 J. Am. Soc. Nephrol. pmid:15548565
Hogan DA et al. A Pseudomonas aeruginosa quorum-sensing molecule influences Candida albicans morphology. 2004 Mol. Microbiol. pmid:15554963
Lutz RJ et al. Nucleoplasmic localization of prelamin A: implications for prenylation-dependent lamin A assembly into the nuclear lamina. 1992 Proc. Natl. Acad. Sci. U.S.A. pmid:1557405
Yang SP and Raner GM Cytochrome P450 expression and activities in human tongue cells and their modulation by green tea extract. 2005 Toxicol. Appl. Pharmacol. pmid:15629189
Shearer AG and Hampton RY Lipid-mediated, reversible misfolding of a sterol-sensing domain protein. 2005 EMBO J. pmid:15635451
Havel CM and Watson JA Isopentenoid synthesis in isolated embryonic Drosophila cells: absolute, basal mevalonate synthesis rate determination. 1992 Arch. Biochem. Biophys. pmid:1567218
Cao YY et al. cDNA microarray analysis of differential gene expression in Candida albicans biofilm exposed to farnesol. 2005 Antimicrob. Agents Chemother. pmid:15673737
Blum R et al. Ras inhibition in glioblastoma down-regulates hypoxia-inducible factor-1alpha, causing glycolysis shutdown and cell death. 2005 Cancer Res. pmid:15705901
Hubálek F et al. Demonstration of isoleucine 199 as a structural determinant for the selective inhibition of human monoamine oxidase B by specific reversible inhibitors. 2005 J. Biol. Chem. pmid:15710600
Laffey SF and Butler G Phenotype switching affects biofilm formation by Candida parapsilosis. 2005 Microbiology (Reading, Engl.) pmid:15817776
Horn TL et al. Modulation of hepatic and renal drug metabolizing enzyme activities in rats by subchronic administration of farnesol. 2005 Chem. Biol. Interact. pmid:15840382
Frosch PJ et al. Patch testing with a new fragrance mix detects additional patients sensitive to perfumes and missed by the current fragrance mix. 2005 Contact Derm. pmid:15859993
Frosch PJ et al. Patch testing with a new fragrance mix - reactivity to the individual constituents and chemical detection in relevant cosmetic products. 2005 Contact Derm. pmid:15859994
Katsuyama M et al. A novel method to control the balance of skin microflora. Part 1. Attack on biofilm of Staphylococcus aureus without antibiotics. 2005 J. Dermatol. Sci. pmid:15927813
Katsuyama M et al. A novel method to control the balance of skin microflora Part 2. A study to assess the effect of a cream containing farnesol and xylitol on atopic dry skin. 2005 J. Dermatol. Sci. pmid:15927814
Yue W et al. Farnesylthiosalicylic acid blocks mammalian target of rapamycin signaling in breast cancer cells. 2005 Int. J. Cancer pmid:15957161
Bachireddy P et al. Getting at MYC through RAS. 2005 Clin. Cancer Res. pmid:15958607
Yaari S et al. Disruption of cooperation between Ras and MycN in human neuroblastoma cells promotes growth arrest. 2005 Clin. Cancer Res. pmid:15958613
Rowat AC et al. Effects of farnesol on the physical properties of DMPC membranes. 2005 Biochim. Biophys. Acta pmid:15963943
Newman CM et al. Post-translational processing of Schizosaccharomyces pombe YPT proteins. 1992 J. Biol. Chem. pmid:1597466
Shchepin R et al. Biologically active fluorescent farnesol analogs. 2005 Chem. Biol. pmid:15975508
Kang L et al. SMGA gels for the skin permeation of haloperidol. 2005 J Control Release pmid:15975680
Martin SW et al. Cell cycle dynamics and quorum sensing in Candida albicans chlamydospores are distinct from budding and hyphal growth. 2005 Eukaryotic Cell pmid:16002645
Enjalbert B and Whiteway M Release from quorum-sensing molecules triggers hyphal formation during Candida albicans resumption of growth. 2005 Eukaryotic Cell pmid:16002646
Khwaja A et al. The inhibition of human mesangial cell proliferation by S-trans, trans-farnesylthiosalicylic acid. 2005 Kidney Int. pmid:16014024
Sobotka-Briner C and Chelsky D COOH-terminal methylation of lamin B and inhibition of methylation by farnesylated peptides corresponding to lamin B and other CAAX motif proteins. 1992 J. Biol. Chem. pmid:1601879
Goodman CL et al. Partial morphological and functional characterization of the corpus allatum-corpus cardiacum complex from the two-spotted stinkbug, Perillus bioculatus (Hemiptera: Pentatomidae). 2005 Mar-Apr In Vitro Cell. Dev. Biol. Anim. pmid:16029075
Mosel DD et al. Farnesol concentrations required to block germ tube formation in Candida albicans in the presence and absence of serum. 2005 Appl. Environ. Microbiol. pmid:16085901
Lagace TA and Ridgway ND Induction of apoptosis by lipophilic activators of CTP:phosphocholine cytidylyltransferase alpha (CCTalpha). 2005 Biochem. J. pmid:16097951
Kafri M et al. Inhibition of Ras attenuates the course of experimental autoimmune neuritis. 2005 J. Neuroimmunol. pmid:16154640
Funari SS et al. Farnesol and geranylgeraniol modulate the structural properties of phosphatidylethanolamine model membranes. 2005 Jul-Aug Mol. Membr. Biol. pmid:16154902
Taylor MM et al. Enhanced apoptosis through farnesol inhibition of phospholipase D signal transduction. 2005 FEBS J. pmid:16176276
Lakshman R et al. Use of CYP2E1-transfected human liver cell lines in elucidating the actions of ethanol. 2005 Alcohol. Clin. Exp. Res. pmid:16205373
Westwater C et al. Candida albicans-conditioned medium protects yeast cells from oxidative stress: a possible link between quorum sensing and oxidative stress resistance. 2005 Eukaryotic Cell pmid:16215173
Pérez-Sala D et al. Prenylated protein methyltransferases do not distinguish between farnesylated and geranylgeranylated substrates. 1992 Biochem. J. pmid:1622400
Braun PC The effect of farnesol on amino acid incorporation by a wild-type and cell-wall variant strain of Candida albicans. 2005 Can. J. Microbiol. pmid:16234870
Yu JS et al. Synthesis of farnesol isomers via a modified Wittig procedure. 2005 Org. Lett. pmid:16235893
Navarathna DH et al. Enhanced pathogenicity of Candida albicans pre-treated with subinhibitory concentrations of fluconazole in a mouse model of disseminated candidiasis. 2005 J. Antimicrob. Chemother. pmid:16239285
Amos S et al. Farnesylthiosalicylic acid induces caspase activation and apoptosis in glioblastoma cells. 2006 Cell Death Differ. pmid:16239932
Koo H et al. Apigenin and tt-farnesol with fluoride effects on S. mutans biofilms and dental caries. 2005 J. Dent. Res. pmid:16246933

Table of Content