(e,z)-farnesol

(e,z)-farnesol is a lipid of Prenol Lipids (PR) class.

Cross Reference

There are no associated biomedical information in the current reference collection.

Current reference collection contains 3613 references associated with (e,z)-farnesol in LipidPedia. Due to lack of full text of references or no associated biomedical terms are recognized in our current text-mining method, we cannot extract any biomedical terms related to diseases, pathways, locations, functions, genes, lipids, and animal models from the associated reference collection.

Users can download the reference list at the bottom of this page and read the reference manually to find out biomedical information.


Here are additional resources we collected from PubChem and MeSH for (e,z)-farnesol

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with (e,z)-farnesol

MeSH term MeSH ID Detail
Adenocarcinoma D000230 166 associated lipids
Body Weight D001835 333 associated lipids
Candidiasis, Oral D002180 11 associated lipids
Cell Transformation, Neoplastic D002471 126 associated lipids
Colonic Neoplasms D003110 161 associated lipids
Edema D004487 152 associated lipids
Fibrosis D005355 23 associated lipids
Glioblastoma D005909 27 associated lipids
Glioma D005910 112 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Per page 10 20 50 | Total 23

PubChem Biomolecular Interactions and Pathways

All references with (e,z)-farnesol

Download all related citations
Per page 10 20 50 100 | Total 813
Authors Title Published Journal PubMed Link
Supuran CT Nanoparticles for controlled release of anti-biofilm agents WO2014130994 (A1): a patent evaluation. 2015 Expert Opin Ther Pat pmid:26028186
Rosales A et al. Synthesis of (±)-aureol by bioinspired rearrangements. 2015 J. Org. Chem. pmid:25591135
Brilhante RS et al. Histoplasma capsulatum in planktonic and biofilm forms: in vitro susceptibility to amphotericin B, itraconazole and farnesol. 2015 J. Med. Microbiol. pmid:25657300
Abdel-Rhman SH et al. Effect of Tyrosol and Farnesol on Virulence and Antibiotic Resistance of Clinical Isolates of Pseudomonas aeruginosa. 2015 Biomed Res Int pmid:26844228
Joo JH et al. Farnesol activates the intrinsic pathway of apoptosis and the ATF4-ATF3-CHOP cascade of ER stress in human T lymphoblastic leukemia Molt4 cells. 2015 Biochem. Pharmacol. pmid:26275811
Krause J et al. Prostaglandin E2 from Candida albicans Stimulates the Growth of Staphylococcus aureus in Mixed Biofilms. 2015 PLoS ONE pmid:26262843
Mogen AB et al. Pluronics-Formulated Farnesol Promotes Efficient Killing and Demonstrates Novel Interactions with Streptococcus mutans Biofilms. 2015 PLoS ONE pmid:26222384
Hargarten JC et al. Candida albicans Quorum Sensing Molecules Stimulate Mouse Macrophage Migration. 2015 Infect. Immun. pmid:26195556
Stoddart CA et al. Oral administration of the nucleoside EFdA (4'-ethynyl-2-fluoro-2'-deoxyadenosine) provides rapid suppression of HIV viremia in humanized mice and favorable pharmacokinetic properties in mice and the rhesus macaque. 2015 Antimicrob. Agents Chemother. pmid:25941222
de Salas F et al. Quorum-Sensing Mechanisms Mediated by Farnesol in Ophiostoma piceae: Effect on Secretion of Sterol Esterase. 2015 Appl. Environ. Microbiol. pmid:25888179
Badar T et al. Phase I study of S-trans, trans-farnesylthiosalicylic acid (salirasib), a novel oral RAS inhibitor in patients with refractory hematologic malignancies. 2015 Clin Lymphoma Myeloma Leuk pmid:25795639
Zhang W et al. Vaginal Microbicide Film Combinations of Two Reverse Transcriptase Inhibitors, EFdA and CSIC, for the Prevention of HIV-1 Sexual Transmission. 2015 Pharm. Res. pmid:25794967
Leonhardt I et al. The fungal quorum-sensing molecule farnesol activates innate immune cells but suppresses cellular adaptive immunity. 2015 MBio pmid:25784697
Horev B et al. pH-activated nanoparticles for controlled topical delivery of farnesol to disrupt oral biofilm virulence. 2015 ACS Nano pmid:25661192
De Loof A The essence of female-male physiological dimorphism: differential Ca2+-homeostasis enabled by the interplay between farnesol-like endogenous sesquiterpenoids and sex-steroids? The Calcigender paradigm. 2015 Gen. Comp. Endocrinol. pmid:25540913
Léger T et al. The metacaspase (Mca1p) has a dual role in farnesol-induced apoptosis in Candida albicans. 2015 Mol. Cell Proteomics pmid:25348831
Katragkou A et al. In vitro interactions between farnesol and fluconazole, amphotericin B or micafungin against Candida albicans biofilms. 2015 J. Antimicrob. Chemother. pmid:25288679
Scheman A et al. European Directive fragrances in natural products. 2014 Mar-Apr Dermatitis pmid:24603515
Sakane C et al. Inhibition of lysine-specific demethylase 1 by the acyclic diterpenoid geranylgeranoic acid and its derivatives. 2014 Biochem. Biophys. Res. Commun. pmid:24406160
Ling Y et al. Synthesis and biological evaluation of farnesylthiosalicylamides as potential anti-tumor agents. 2014 Bioorg. Med. Chem. pmid:24300920

Table of Content