Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Anorexia D000855 8 associated lipids
Ascaridiasis D001198 1 associated lipids
Body Weight D001835 333 associated lipids
Bronchopneumonia D001996 7 associated lipids
Edema D004487 152 associated lipids
Esophageal Neoplasms D004938 20 associated lipids
Fetal Resorption D005327 15 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Hematuria D006417 13 associated lipids
Hemolysis D006461 131 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Hyperplasia D006965 34 associated lipids
Immune Complex Diseases D007105 9 associated lipids
Inflammation D007249 119 associated lipids
Mycoses D009181 18 associated lipids
Obesity D009765 29 associated lipids
Poultry Diseases D011201 21 associated lipids
Precancerous Conditions D011230 48 associated lipids
Splenic Diseases D013158 5 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Ji F et al. Natural occurrence of deoxynivalenol and zearalenone in wheat from Jiangsu province, China. 2014 Food Chem pmid:24679796
Choi HJ et al. Postharvest strategies for deoxynivalenol and zearalenone reduction in stored adlay (Coix lachryma-jobi L.) grains. 2014 J. Food Prot. pmid:24674439
Cortinovis C et al. Effects of fumonisin B1 alone and combined with deoxynivalenol or zearalenone on porcine granulosa cell proliferation and steroid production. 2014 Theriogenology pmid:24576714
Mudili V et al. Mould incidence and mycotoxin contamination in freshly harvested maize kernels originated from India. 2014 J. Sci. Food Agric. pmid:24609945
Malbrán I et al. Toxigenic capacity and trichothecene production by Fusarium graminearum isolates from Argentina and their relationship with aggressiveness and fungal expansion in the wheat spike. 2014 Phytopathology pmid:24168045
Yoshinari T et al. Structural determination of a nivalenol glucoside and development of an analytical method for the simultaneous determination of nivalenol and deoxynivalenol, and their glucosides, in wheat. 2014 J. Agric. Food Chem. pmid:24433151
Fruhmann P et al. Stereoselective Luche reduction of deoxynivalenol and three of its acetylated derivatives at C8. 2014 Toxins (Basel) pmid:24434906
Jin F et al. Fusarium-damaged kernels and deoxynivalenol in Fusarium-infected U.S. winter wheat. 2014 Phytopathology pmid:24400658
Schmeits PC et al. DON shares a similar mode of action as the ribotoxic stress inducer anisomycin while TBTO shares ER stress patterns with the ER stress inducer thapsigargin based on comparative gene expression profiling in Jurkat T cells. 2014 Toxicol. Lett. pmid:24247028
Ansari KI et al. Light influences how the fungal toxin deoxynivalenol affects plant cell death and defense responses. 2014 Toxins (Basel) pmid:24561479
Pietsch C et al. Organ damage and hepatic lipid accumulation in carp (Cyprinus carpio L.) after feed-borne exposure to the mycotoxin, deoxynivalenol (DON). 2014 Toxins (Basel) pmid:24566729
Wu W and Zhang H Role of tumor necrosis factor-α and interleukin-1β in anorexia induction following oral exposure to the trichothecene deoxynivalenol (vomitoxin) in the mouse. 2014 J Toxicol Sci pmid:25392278
De Girolamo A et al. Rapid analysis of deoxynivalenol in durum wheat by FT-NIR spectroscopy. 2014 Toxins (Basel) pmid:25384107
Devreese M et al. Efficacy of active carbon towards the absorption of deoxynivalenol in pigs. 2014 Toxins (Basel) pmid:25337799
Antonissen G et al. The mycotoxin deoxynivalenol predisposes for the development of Clostridium perfringens-induced necrotic enteritis in broiler chickens. 2014 PLoS ONE pmid:25268498
Wu W et al. Comparison of anorectic and emetic potencies of deoxynivalenol (vomitoxin) to the plant metabolite deoxynivalenol-3-glucoside and synthetic deoxynivalenol derivatives EN139528 and EN139544. 2014 Toxicol. Sci. pmid:25173790
Martinez M et al. [Fusarium graminearum presence in wheat samples for human consumption]. 2014 Jan-Mar Rev. Argent. Microbiol. pmid:24721273
Bannert E et al. Metabolic and hematological consequences of dietary deoxynivalenol interacting with systemic Escherichia coli lipopolysaccharide. 2015 Toxins (Basel) pmid:26580654
Schwartz-Zimmermann HE et al. Metabolism of deoxynivalenol and deepoxy-deoxynivalenol in broiler chickens, pullets, roosters and turkeys. 2015 Toxins (Basel) pmid:26569307
Paulick M et al. Studies on the bioavailability of deoxynivalenol (DON) and DON sulfonate (DONS) 1, 2, and 3 in pigs fed with sodium sulfite-treated DON-contaminated maize. 2015 Toxins (Basel) pmid:26556376
Warth B et al. Hydrophilic interaction liquid chromatography coupled with tandem mass spectrometry for the quantification of uridine diphosphate-glucose, uridine diphosphate-glucuronic acid, deoxynivalenol and its glucoside: In-house validation and application to wheat. 2015 J Chromatogr A pmid:26554298
Liu X et al. Acetohydroxyacid synthase FgIlv2 and FgIlv6 are involved in BCAA biosynthesis, mycelial and conidial morphogenesis, and full virulence in Fusarium graminearum. 2015 Sci Rep pmid:26552344
Perochon A et al. TaFROG Encodes a Pooideae Orphan Protein That Interacts with SnRK1 and Enhances Resistance to the Mycotoxigenic Fungus Fusarium graminearum. 2015 Plant Physiol. pmid:26508775
Clark ES et al. High Sensitivity of Aged Mice to Deoxynivalenol (Vomitoxin)-Induced Anorexia Corresponds to Elevated Proinflammatory Cytokine and Satiety Hormone Responses. 2015 Toxins (Basel) pmid:26492270
Gauthier L et al. Metabolomics to Decipher the Chemical Defense of Cereals against Fusarium graminearum and Deoxynivalenol Accumulation. 2015 Int J Mol Sci pmid:26492237
Nussbaumer T et al. Joint Transcriptomic and Metabolomic Analyses Reveal Changes in the Primary Metabolism and Imbalances in the Subgenome Orchestration in the Bread Wheat Molecular Response to Fusarium graminearum. 2015 G3 (Bethesda) pmid:26438291
Ali N et al. Deoxynivalenol Exposure Assessment for Pregnant Women in Bangladesh. 2015 Toxins (Basel) pmid:26404372
Bönnighausen J et al. Disruption of the GABA shunt affects mitochondrial respiration and virulence in the cereal pathogen Fusarium graminearum. 2015 Mol. Microbiol. pmid:26305050
Michlmayr H et al. A Versatile Family 3 Glycoside Hydrolase from Bifidobacterium adolescentis Hydrolyzes β-Glucosides of the Fusarium Mycotoxins Deoxynivalenol, Nivalenol, and HT-2 Toxin in Cereal Matrices. 2015 Appl. Environ. Microbiol. pmid:25979885
Piacentini KC et al. Fungi and the natural occurrence of deoxynivalenol and fumonisins in malting barley (Hordeum vulgare L.). 2015 Food Chem pmid:25977017
Wu L et al. Dietary L-arginine supplementation protects weanling pigs from deoxynivalenol-induced toxicity. 2015 Toxins (Basel) pmid:25884909
Pralatnet S et al. The fate and tissue disposition of deoxynivalenol in broiler chickens. 2015 J. Vet. Med. Sci. pmid:25843039
Zhou HR and Pestka JJ Deoxynivalenol (Vomitoxin)-Induced Cholecystokinin and Glucagon-Like Peptide-1 Release in the STC-1 Enteroendocrine Cell Model Is Mediated by Calcium-Sensing Receptor and Transient Receptor Potential Ankyrin-1 Channel. 2015 Toxicol. Sci. pmid:25787141
Kazemi Darsanaki R et al. Occurrence of deoxynivalenol (DON) in wheat flours in Guilan province, northern Iran. 2015 Ann Agric Environ Med pmid:25780825
Kluger B et al. Biotransformation of the mycotoxin deoxynivalenol in fusarium resistant and susceptible near isogenic wheat lines. 2015 PLoS ONE pmid:25775425
Paulick M et al. Effects of increasing concentrations of sodium sulfite on deoxynivalenol and deoxynivalenol sulfonate concentrations of maize kernels and maize meal preserved at various moisture content. 2015 Toxins (Basel) pmid:25760079
Yun Y et al. Functional analysis of the Fusarium graminearum phosphatome. 2015 New Phytol. pmid:25758923
Ji F et al. Relationship of deoxynivalenol content in grain, chaff, and straw with Fusarium head blight severity in wheat varieties with various levels of resistance. 2015 Toxins (Basel) pmid:25751146
Walter S et al. A wheat ABC transporter contributes to both grain formation and mycotoxin tolerance. 2015 J. Exp. Bot. pmid:25732534
Guerrero-Netro HM et al. Effects of the mycotoxin deoxynivalenol on steroidogenesis and apoptosis in granulosa cells. 2015 Reproduction pmid:25731188
Rodríguez-Carrasco Y et al. Preliminary estimation of deoxynivalenol excretion through a 24 h pilot study. 2015 Toxins (Basel) pmid:25723325
McElhinney C et al. Development and validation of an UHPLC-MS/MS method for the determination of mycotoxins in grass silages. 2015 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:26374621
Andersen KF et al. Fusarium head blight development and deoxynivalenol accumulation in wheat as influenced by post-anthesis moisture patterns. 2015 Phytopathology pmid:25163011
Liang Z et al. Individual and combined effects of deoxynivalenol and zearalenone on mouse kidney. 2015 Environ. Toxicol. Pharmacol. pmid:26407231
Kharbikar LL et al. Impact of post-anthesis rainfall, fungicide and harvesting time on the concentration of deoxynivalenol and zearalenone in wheat. 2015 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:26361223
Przybylska-Gornowicz B et al. The effects of low doses of two Fusarium toxins, zearalenone and deoxynivalenol, on the pig jejunum. A light and electron microscopic study. 2015 Toxins (Basel) pmid:26569306
Gu W et al. A novel and simple cell-based electrochemical impedance biosensor for evaluating the combined toxicity of DON and ZEN. 2015 Biosens Bioelectron pmid:25863342
Winkler J et al. Development of a multi-toxin method for investigating the carryover of zearalenone, deoxynivalenol and their metabolites into milk of dairy cows. 2015 Food Addit Contam Part A Chem Anal Control Expo Risk Assess pmid:25849036
Sun LH et al. Individual and combined cytotoxic effects of aflatoxin B1, zearalenone, deoxynivalenol and fumonisin B1 on BRL 3A rat liver cells. 2015 Toxicon pmid:25549941
Gerez JR et al. Deoxynivalenol alone or in combination with nivalenol and zearalenone induce systemic histological changes in pigs. 2015 Exp. Toxicol. Pathol. pmid:25467749