Vomitoxin

Vomitoxin is a lipid of Prenol Lipids (PR) class. Vomitoxin is associated with abnormalities such as Infection and Gastroenteritis. The involved functions are known as mRNA Expression, Inflammation, Transcription, Genetic, Protein Biosynthesis and Adverse effects. Vomitoxin often locates in Lymphoid Tissue, Immune system, Bone Marrow and Plasma membrane. The associated genes with Vomitoxin are IMPACT gene, HIST1H1C gene and RBM39 gene. The related experimental models are Mouse Model.

Cross Reference

Introduction

To understand associated biological information of Vomitoxin, we collected biological information of abnormalities, associated pathways, cellular/molecular locations, biological functions, related genes/proteins, lipids and common seen animal/experimental models with organized paragraphs from literatures.

What diseases are associated with Vomitoxin?

Vomitoxin is suspected in Infection, Gastroenteritis and other diseases in descending order of the highest number of associated sentences.

Related references are mostly published in these journals:

Disease Cross reference Weighted score Related literature
Loading... please refresh the page if content is not showing up.

Possible diseases from mapped MeSH terms on references

We collected disease MeSH terms mapped to the references associated with Vomitoxin

MeSH term MeSH ID Detail
Hemolysis D006461 131 associated lipids
Inflammation D007249 119 associated lipids
Body Weight D001835 333 associated lipids
Edema D004487 152 associated lipids
Esophageal Neoplasms D004938 20 associated lipids
Precancerous Conditions D011230 48 associated lipids
Stomach Neoplasms D013274 24 associated lipids
Hematuria D006417 13 associated lipids
Weight Gain D015430 101 associated lipids
Obesity D009765 29 associated lipids
Hyperplasia D006965 34 associated lipids
Carcinoma, Hepatocellular D006528 140 associated lipids
Fetal Weight D020567 12 associated lipids
Immune Complex Diseases D007105 9 associated lipids
Glomerulonephritis, IGA D005922 7 associated lipids
Swine Diseases D013553 16 associated lipids
Poultry Diseases D011201 21 associated lipids
Thymus Neoplasms D013953 15 associated lipids
Bronchopneumonia D001996 7 associated lipids
Fetal Resorption D005327 15 associated lipids
Weight Loss D015431 56 associated lipids
Anorexia D000855 8 associated lipids
Mycoses D009181 18 associated lipids
Coronavirus Infections D018352 4 associated lipids
Mycotoxicosis D015651 5 associated lipids
Adrenocortical Carcinoma D018268 4 associated lipids
Splenic Diseases D013158 5 associated lipids
Kashin-Beck Disease D057767 2 associated lipids
Ascaridiasis D001198 1 associated lipids
Per page 10 20 50 | Total 29

PubChem Associated disorders and diseases

What pathways are associated with Vomitoxin

There are no associated biomedical information in the current reference collection.

PubChem Biomolecular Interactions and Pathways

Link to PubChem Biomolecular Interactions and Pathways

What cellular locations are associated with Vomitoxin?

Related references are published most in these journals:

Location Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

What functions are associated with Vomitoxin?


Related references are published most in these journals:

Function Cross reference Weighted score Related literatures

What lipids are associated with Vomitoxin?

There are no associated biomedical information in the current reference collection.

What genes are associated with Vomitoxin?

Related references are published most in these journals:


Gene Cross reference Weighted score Related literatures

What common seen animal models are associated with Vomitoxin?

Mouse Model

Mouse Model are used in the study 'Dietary fish oil suppresses experimental immunoglobulin a nephropathy in mice.' (Pestka JJ et al., 2002).

Related references are published most in these journals:

Model Cross reference Weighted score Related literatures
Loading... please refresh the page if content is not showing up.

NCBI Entrez Crosslinks

All references with Vomitoxin

Download all related citations
Per page 10 20 50 100 | Total 1588
Authors Title Published Journal PubMed Link
Dänicke S et al. On the interactions between Fusarium toxin-contaminated wheat and nonstarch polysaccharide hydrolyzing enzymes in diets of broilers on performance, intestinal viscosity, and carryover of deoxynivalenol. 2007 Poult. Sci. pmid:17234842
Sabater-Vilar M et al. In vitro assessment of adsorbents aiming to prevent deoxynivalenol and zearalenone mycotoxicoses. 2007 Mycopathologia pmid:17294292
Dänicke S et al. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from the sow to the full-term piglet during the last third of gestation. 2007 Food Chem. Toxicol. pmid:17399880
Dänicke S et al. On the interactions between Fusarium toxin-contaminated wheat and non-starch-polysaccharide hydrolysing enzymes in turkey diets on performance, health and carry-over of deoxynivalenol and zearalenone. 2007 Br. Poult. Sci. pmid:17364539
Ponts N et al. Exogenous H(2)O(2) and catalase treatments interfere with Tri genes expression in liquid cultures of Fusarium graminearum. 2007 FEBS Lett. pmid:17250833
Ansari KI et al. Retrotransposon and gene activation in wheat in response to mycotoxigenic and non-mycotoxigenic-associated Fusarium stress. 2007 Theor. Appl. Genet. pmid:17256175
Grove JF The trichothecenes and their biosynthesis. 2007 Fortschr Chem Org Naturst pmid:17302179
He J et al. Purification of deoxynivalenol from Fusarium graminearum rice culture and mouldy corn by high-speed counter-current chromatography. 2007 J Chromatogr A pmid:17306807
Wollenhaupt K et al. Comparison of the molecular effects of the mycotoxins beta-zearalenol and deoxynivalenol in porcine endometrial cells--a review. 2007 Acta Vet. Hung. pmid:17385562
Cerveró MC et al. Determination of trichothecenes, zearalenone and zearalenols in commercially available corn-based foods in Spain. 2007 Rev Iberoam Micol pmid:17592894
Goyarts T et al. On the transfer of the Fusarium toxins deoxynivalenol (DON) and zearalenone (ZON) from sows to their fetuses during days 35-70 of gestation. 2007 Toxicol. Lett. pmid:17544604
Rasmussen PH et al. Annual variation of deoxynivalenol in Danish wheat flour 1998-2003 and estimated daily intake by the Danish population. 2007 Food Addit Contam pmid:17364935
Krska R et al. Determination of molar absorptivity coefficients for major type-B trichothecenes and certification of calibrators for deoxynivalenol and nivalenol. 2007 Anal Bioanal Chem pmid:17551715
Videmann B et al. Epithelial transport of deoxynivalenol: involvement of human P-glycoprotein (ABCB1) and multidrug resistance-associated protein 2 (ABCC2). 2007 Food Chem. Toxicol. pmid:17543436
Ragab WS et al. Fate of deoxynivalenol in contaminated wheat grain during preparation of Egyptian 'balila'. 2007 Int J Food Sci Nutr pmid:17514535
Sakai A et al. The activities of mycotoxins derived from Fusarium and related substances in a short-term transformation assay using v-Ha-ras-transfected BALB/3T3 cells (Bhas 42 cells). 2007 Mutat. Res. pmid:17499015
Awad WA et al. Influence of deoxynivalenol on the D-glucose transport across the isolated epithelium of different intestinal segments of laying hens. 2007 J Anim Physiol Anim Nutr (Berl) pmid:17516937
Wang SH et al. Detection of deoxynivalenol based on a single-chain fragment variable of the antideoxynivalenol antibody. 2007 FEMS Microbiol. Lett. pmid:17521405
Wu X et al. Synthesis and characterization of deoxynivalenol glucuronide: its comparative immunotoxicity with deoxynivalenol. 2007 Food Chem. Toxicol. pmid:17507135
Mankeviciene A et al. Fusarium mycotoxins in Lithuanian cereals from the 2004-2005 harvests. 2007 Ann Agric Environ Med pmid:17655186
Malekinejad H et al. Exposure of oocytes to the Fusarium toxins zearalenone and deoxynivalenol causes aneuploidy and abnormal embryo development in pigs. 2007 Biol. Reprod. pmid:17652666
Jurjevic Z et al. Changes in fungi and mycotoxins in pearl millet under controlled storage conditions. 2007 Mycopathologia pmid:17701446
Lattanzio VM et al. Simultaneous determination of aflatoxins, ochratoxin A and Fusarium toxins in maize by liquid chromatography/tandem mass spectrometry after multitoxin immunoaffinity cleanup. 2007 Rapid Commun. Mass Spectrom. pmid:17828806
Jiang GL et al. QTL analysis of resistance to Fusarium head blight in the novel wheat germplasm CJ 9306. II. Resistance to deoxynivalenol accumulation and grain yield loss. 2007 Theor. Appl. Genet. pmid:17726598
Stepanik T et al. Effects of electron beam irradiation on deoxynivalenol levels in distillers dried grain and solubles and in production intermediates. 2007 Food Addit Contam pmid:17691014
Königs M et al. Cytotoxicity, metabolism and cellular uptake of the mycotoxin deoxynivalenol in human proximal tubule cells and lung fibroblasts in primary culture. 2007 Toxicology pmid:17825972
Moon Y et al. Toxic alterations in chick embryonic liver and spleen by acute exposure to Fusarium-producing mycotoxin deoxynivalenol. 2007 Biol. Pharm. Bull. pmid:17827746
Kouadio JH et al. Effects of combinations of Fusarium mycotoxins on the inhibition of macromolecular synthesis, malondialdehyde levels, DNA methylation and fragmentation, and viability in Caco-2 cells. 2007 Toxicon pmid:17109910
Boudra H and Morgavi DP Reduction in fusarium toxin levels in corn silage with low dry matter and storage time. 2008 J. Agric. Food Chem. pmid:18498169
Wang S et al. Construction of multiform scFv antibodies using linker peptide. 2008 J Genet Genomics pmid:18499076
Driehuis F et al. Occurrence of mycotoxins in maize, grass and wheat silage for dairy cattle in the Netherlands. 2008 Food Addit Contam Part B Surveill pmid:24784536
Awad WA et al. Effects of B-trichothecenes on luminal glucose transport across the isolated jejunal epithelium of broiler chickens. 2008 J Anim Physiol Anim Nutr (Berl) pmid:18477301
Kolosova AY et al. Lateral-flow colloidal gold-based immunoassay for the rapid detection of deoxynivalenol with two indicator ranges. 2008 Anal. Chim. Acta pmid:18482609
Tiemann U et al. The effect of feeding a diet naturally contaminated with deoxynivalenol (DON) and zearalenone (ZON) on the spleen and liver of sow and fetus from day 35 to 70 of gestation. 2008 Toxicol. Lett. pmid:18550300
Bae HK and Pestka JJ Deoxynivalenol induces p38 interaction with the ribosome in monocytes and macrophages. 2008 Toxicol. Sci. pmid:18502741
Tabata S et al. [Investigation of ochratoxin a, B and citrinin contamination in various commercial foods]. 2008 Shokuhin Eiseigaku Zasshi pmid:18503248
Desjardins AE et al. Gibberella ear rot of maize (Zea mays) in Nepal: distribution of the mycotoxins nivalenol and deoxynivalenol in naturally and experimentally infected maize. 2008 J. Agric. Food Chem. pmid:18533662
Li M and Pestka JJ Comparative induction of 28S ribosomal RNA cleavage by ricin and the trichothecenes deoxynivalenol and T-2 toxin in the macrophage. 2008 Toxicol. Sci. pmid:18535001
Ruprich J and Ostrý V Immunochemical methods in health risk assessment: cross reactivity of antibodies against mycotoxin deoxynivalenol with deoxynivalenol-3-glucoside. 2008 Cent. Eur. J. Public Health pmid:18459478
Neuhof T et al. Distribution of trichothecenes, zearalenone, and ergosterol in a fractionated wheat harvest lot. 2008 J. Agric. Food Chem. pmid:18642928
Borutova R et al. Effects of deoxynivalenol and zearalenone on oxidative stress and blood phagocytic activity in broilers. 2008 Arch Anim Nutr pmid:18763624
Wichert B et al. Judgement of hygienic quality of roughage in horse stables in Switzerland. 2008 J Anim Physiol Anim Nutr (Berl) pmid:18662352
Desmond OJ et al. The Fusarium mycotoxin deoxynivalenol elicits hydrogen peroxide production, programmed cell death and defence responses in wheat. 2008 Mol. Plant Pathol. pmid:18705859
Dänicke S et al. Effects of a Fusarium toxin-contaminated triticale, either untreated or treated with sodium metabisulphite (Na2S2O5, SBS), on weaned piglets with a special focus on liver function as determined by the 13C-methacetin breath test. 2008 Arch Anim Nutr pmid:18763622
Keese C et al. Ruminal fermentation patterns and parameters of the acid base metabolism in the urine as influenced by the proportion of concentrate in the ration of dairy cows with and without Fusarium toxin-contaminated triticale. 2008 Arch Anim Nutr pmid:18763623
Poapolathep A et al. Detection of deoxynivalenol contamination in wheat products in Thailand. 2008 J. Food Prot. pmid:18810882
Yang H et al. Ribotoxic mycotoxin deoxynivalenol induces G2/M cell cycle arrest via p21Cip/WAF1 mRNA stabilization in human epithelial cells. 2008 Toxicology pmid:18006205
Abolmaali S et al. Engineered bakers yeast as a sensitive bioassay indicator organism for the trichothecene toxin deoxynivalenol. 2008 J. Microbiol. Methods pmid:18243380
Stepień Ł et al. Wheat-infecting Fusarium species in Poland--their chemotypes and frequencies revealed by PCR assay. 2008 J. Appl. Genet. pmid:19029692
Paul PA et al. Efficacy of triazole-based fungicides for fusarium head blight and deoxynivalenol control in wheat: a multivariate meta-analysis. 2008 Phytopathology pmid:18943738